A coupled fluid-dynamics-heat transfer model for 3D simulations of the aqueous humor flow in the human eye

Thomas Saigre¹, Christophe Prud'homme¹, Marcela Szopos², Vincent Chabannes¹

¹Institut de Recherche Mathématique Avancée, UMR 7501 Université de Strasbourg et CNRS ²Université Paris Cité, CNRS, MAP5, F-75006 Paris, France

Computational & Mathematical Biomedical Engineering Conférence 26th June 2024

Introduction	Computational framework	Conclusion	References
Introduction Biophysical model			

Context

- Understanding the human eye involves studying complex interactions
 between physical phenomena such as heat transfer and fluid dynamics.
- Accurate computational models are crucial for simulating ocular system physiology and understanding ocular diseases.
- We focus on simulating aqueous humor flow and its coupling with heat transfer in the eye.

Aqueous humor (AH)

- Transparent fluid produced by the ciliary body, that flows from the posterior chamber to the anterior chamber.
- Plays a fundamental role in the maintenance of the intraocular pressure level.
- In addition to the hydraulic pressure difference created by production and drainage, AH dynamic is influenced by posture and thermal factors.

Figure 2: Geometrical model of the human eye.

Introduction		Computational framework	Conclusion	References
	Biophysical model			
D · · · ·		1.10		

Biophysical model¹²

- Imcompressible fluid, constant density,
- ▶ The steady flow of the aqueous humor is governed by the Navier–Stokes equations:

Navier-Stokes equations Boussinesq approximation

$$\rho(\boldsymbol{u} \cdot \nabla \boldsymbol{u}) - \mu \nabla^2 \boldsymbol{u} + \nabla \boldsymbol{p} = -\rho \beta (T - T_{\text{ref}}) \boldsymbol{g} \quad \text{in } \Omega_{\text{AH}},$$

$$Mass \text{ conservation} \quad \nabla \cdot \boldsymbol{u} = 0 \qquad \qquad \text{in } \Omega_{\text{AH}},$$
Heat transfer equation
$$\rho C_{\boldsymbol{p}} \boldsymbol{u} \cdot \nabla T - k \nabla^2 T = 0 \qquad \qquad \text{in } \Omega,$$

¹Abdelhafid et al. "Operator Splitting for the Simulation of Aqueous Humor Thermo-Fluid-Dynamics in the Anterior Chamber". In: *Recent Developments in Mathematical, Statistical and Computational Sciences* (2021).

²Wang et al. "luid and structure coupling analysis of the interaction between aqueous humor and iris". In: *BioMedical Engineering OnLine* (2016).

Thomas Saigre

Figure 3: Description of boundary conditions.

Thomas Saigre

CMBE24 - 26th June 2024 7 / 14

	Computational framework	Conclusion	References
Framework Mesh convergence s	tudy Validation		

Mesh convergence study

M h _{min}	h h	h	// alamanta	# Degree of freedom			
	¹⁷ min	min ⁿ max n _m	¹⁷ mean	$n_{\rm mean}$ # elements	Т	и	р
MO	$1.21\cdot 10^{-4}$	$7.59\cdot 10^{-3}$	$2.53\cdot 10^{-3}$	16,027	2,928	15,105	852
M1	$1.41\cdot 10^{-4}$	$7.42 \cdot 10^{-3}$	$2.38 \cdot 10^{-3}$	17,899	3,275	17,205	957
M2	$1.15\cdot 10^{-4}$	$5.75 \cdot 10^{-3}$	$1.07\cdot 10^{-3}$	80,924	14,213	95,670	4,956
МЗ	$3.15\cdot 10^{-5}$	$3.25 \cdot 10^{-3}$	$3.46 \cdot 10^{-4}$	$9.52 \cdot 10^5$	$1.64\cdot 10^5$	$1.19\cdot 10^6$	56,120
M4	$2.01\cdot 10^{-5}$	$3.07 \cdot 10^{-3}$	$1.65\cdot 10^{-4}$	$4.97 \cdot 10^6$	$8.4\cdot 10^5$	$6.79\cdot 10^{6}$	$3.06 \cdot 10^5$

Table 1: Caracteristics of meshes used for the convergence study.

Computational framework	Conclusion	References
Mesh convergence study Validation		

Mesh convergence study

Computational framework	Conclusion	References
ence study Validation		

Validation: temperature at the surface of the cornea

Author			AH flow coupled		
Author	amb	NO AH NOW	Prone	Supine	Standing
Scott ³ (2D)	293.15	306.4	-	-	_
Ooi et al. ⁴ (2D)	298	306.45	_	_	306.9
	293	306.81	_	_	307.06
Karampatzakis et al. ⁵ (3D)	296	307.33	-	-	307.51
	298	307.69	-	-	307.83
	293	306.5599	306.5644	306.5542	306.6323
Current model (3D)	296	307.1080	307.1114	307.104	307.1559
	298	307.4735	307.4760	307.4704	307.5078

Table 1: Corneal surface temperature for varitous configuration. Temperatures are given in K.

³Scott. Physics in Medicine (1988).

⁴Ooi et al. Computers in Biology and Medicine (2008).

⁵Karampatzakis et al. Physics in Medicine & Biology (2010).

Thomas Saigre

Fluid dynamics and heat transfer in human eye

Figure 4: Temperature over the eyeball in the standing position, on a vertical cut, and mesh discretization.

Figure 5: Standing position.

	Computational framework	Numerical results	Conclusion	References	
Temperature Pressure and velocity					

Pressure and velocity: impact of the posture

Figure 5: Prone position.

Recirculation of the AH,

Formation of a Krukenberg's spindle, in good agreement with clinical observations and previous studies^{abc},

^aWang et al., *BioMedical Engineering OnLine* (2016). ^bAbdelhafid et al., *Recent Developments in Math.*,

Statistical and Computational Sciences (2021).

^CMurgoitio-Esandi et al., Translational Vision Science & Technology (2023).

	Computational framework	Numerical results	Conclusion	References	
Temperature Pressure and velocity					

Pressure and velocity: impact of the posture

Figure 5: Supine position.

Recirculation of the AH,

- Formation of a Krukenberg's spindle, in good agreement with clinical observations and previous studies^{abc},
- Fluid dynamics is strongly influenced by the position of the patient.

^aWang et al., BioMedical Engineering OnLine (2016).

^bAbdelhafid et al., Recent Developments in Math., Statistical and Computational Sciences (2021).

^cMurgoitio-Esandi et al., Translational Vision Science & Technology (2023).

Conclusion and perspectives

- d Coupled fluid-dynamics-heat transfer model for the AH flow in the human eye,
- **d** Formation of **Krukenberg's spindle**,
- Captured the importance of the position of the patient on the AH flow and temperature distribution.

⁶Thomas Saigre et al. "Model order reduction and sensitivity analysis for complex heat transfer simulations inside the human eyeball". Minor revision in IJNMBE. Dec. 2023.

Thomas Saigre

Conclusion and perspectives

- discrete transfer model for the AH flow in the human eye,
- **d** Formation of **Krukenberg's spindle**,
- Captured the importance of the position of the patient on the AH flow and temperature distribution.
- **A** Computational cost of the simulations, too high for real-time applications.
- ▶ Mathematical perspective: parametrical sensisivity analysis by using ROM⁶.
- **Clinical perspective:** assess the topical administration of drugs.

⁶Thomas Saigre et al. "Model order reduction and sensitivity analysis for complex heat transfer simulations inside the human eyeball". Minor revision in IJNMBE. Dec. 2023.

Computational framework	Conclusion	References

Thank you for your attention !

Introduction	Computational framework	Numerical results	Conclusion	References
Bibliography				
[Abd+21]	Farah Abdelhafid et al. " Humor Thermo-Fluid-Dy Developments in Mather Ed. by D. Marc Kilgour et	Operator Splitting for namics in the Anterior natical, Statistical and et al. Cham: Springer I	the Simulation of A Chamber". In: <i>Reco</i> <i>Computational Scie</i> International Publish	queous ent ences. ling,

[KS10] Andreas Karampatzakis and Theodoros Samaras. "Numerical model of heat transfer in the human eye with consideration of fluid dynamics of the aqueous humour". In: *Physics in Medicine & Biology* 55.19 (Sept. 2010), p. 5653.

[Mur+23] Javier Murgoitio-Esandi et al. "A Mechanistic Model of Aqueous Humor Flow to Study Effects of Angle Closure on Intraocular Pressure". In: *Translational Vision Science & Technology* 12.1 (Jan. 2023), pp. 16–16.

2021. pp. 489-499.

Introduction	Computational framework	Numerical results	Conclusion	References
Bibliography				
[ON08]	Ean-Hin Ooi and Eddie N hydrodynamics in human <i>Medicine</i> 38.2 (2008), pp	/in-Kwee Ng. "Simulat eye heat transfer". In:). 252–262.	ion of aqueous hum Computers in Biolo	or ogy and
[Pru+24]	Christophe Prud'homme preview.9. Version v0.112	et al. <i>feelpp/feelpp: Fe</i> 1.0-preview.9. Mar. 202	eel++ Release V111 24.	
[Sco88]	J.A. Scott. "A finite elem Physics in Medicine and	ent model of heat trans <i>Biology</i> 33.2 (1988), p	sport in the human e p. 227–242.	eye". In:
[SPS23]	Thomas Saigre, Christop order reduction and sensit inside the human eyeball	he Prud'Homme, and I tivity analysis for compl . Minor revision in IJN	Marcela Szopos. "M ex heat transfer simi NMBE. Dec. 2023.	odel ulations
[Wan+16]	Wenjia Wang et al. "Fluid between aqueous humor (Dec. 2016), p. 133.	d and structure coupling and iris". In: <i>BioMedic</i>	g analysis of the inte al Engineering OnLi	eraction ine 15.2

Thomas Saigre

Fluid dynamics and heat transfer in human eye

CMBE24 - 26th June 2024 14 / 14