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▶ The eye is a complex organ, with a
multilayered structure.

▶ Need to understand ocular physiology
and pathology.

▶ Complexity to perform measurements
on a human subjecta, mostly available
on surfaceb.

 Present work: focus on heat transfer
and aqueous humor flow dynamics.

aRosenbluth & Fatt. Exp. Eye Res. (1977)
bPurslow & Wolffsohn. Eye Contact Lens. (2005)
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Context

▶ The anterior chamber (AC) is filled
with aqueous humor (AH), whose
dynamics is crucial for the ocular
healtha,

▶ understand the AH flow dynamics
and heat transfer is important for
drug distributionb, or ocular
therapies (laser treatment, corneal cell
sedimentationc, etc.).

aDvoriashyna et al. Ocular Fluid Dynamics.
(2019)

bBhandari. J Control Release. (2021)
cKinoshita et al. N Engl J Med. (2018)
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Figure 1: Production and drainage of AH in the
eye.
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Building the digital twin of the eye

▶ Based on mathematical modelsa of
the eye.

▶ Data from previous studies and
measurements to validate and
enhance the models.

▶ Digital twin: a virtual replica of the
eye.

aScott (1988), Ng & Ooi (2007), Dvoriashyna
et al. (2019)...

bSala et al. “The ocular mathematical virtual
simulator” (2023). Models

Literaturea

Eye2Brain

Simulations

OMVSb

work

Data

The present

Digital Twin
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Methodology

Literature DataClinical Data

Predicted outputs

Comparable outputs
Model

Estimated inputs

Measured inputs

Va
lid

at
io

n

Biomedical applications

Figure 2: Methodology for the development of patient-specific models, adapted froma.

aSala et al. International Journal for Numerical Methods in Biomedical Engineering. (2023)
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General framework

Model complexity

• Monophysics-Multiphysics problem
• Numerous parameters and scarce

experimental data
• Influence of multiple risk factors

or a combination of them

Sensitivity analysis

In silico model

Finite elementValidation of the model

Prohibitive cost in 3D

Model reduction

Reduced
basis

method
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Programming and runtime environment

▶ Feel++a: Open source library to solve ODEs and PDEs using the finite element
methods.

▶ Usage of toolboxes or internal libraries to solve complex problems.
2 All the results presented here are developed and obtained within this framework.

Salome/
OpenCascade Feel++ Domain Specific Language OpenTURNS

mesh.eye Feel++ Toolboxes
(heat, heatfluid)

feelpp_eye_
heatfluid_wss

feelpp_laplacian_
dirac

Feel++ Mor
PyFeelpp

feelpp_sensitivity_

analysis
feelpp.nirb

aC. Prud’homme, V. Chabannes V, T. Saigre et al. Feel++ Release V111. (2024)
� github.com/feelpp/feelpp
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Mathematical modeling of heat transfer and
aqueous humor flow mechanisms in the eye
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Geometrical modela

O

Lamina Cribrosa

Optic Nerve

Vitreous
humor

Lens

Choroid

Retina

Sclera

Aqueous
humor

Cornea

Geometrical
Central Cornea

aSala et al. The ocular mathematical virtual simulator: A validated multiscale model for
hemodynamics and biomechanics in the human eye. Int J Numer Method Biomed Eng. (2023)
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Biophysical modelab

▶ Incompressible fluid, constant density,
▶ The steady flow of the aqueous humor is governed by the

Navier–Stokes equations:

ρ(u · ∇)u −∇ · (2µD(u)− pI) = −ρβ(T − Tref)g in ΩAH,

Incompressibility ∇ · u = 0 in ΩAH,

Heat transfer equation ρCpu · ∇T − ki∇2T = 0 in Ω =
⋃
i

Ωi .

Boussinesq approximationNavier-Stokes equations

Anterior
chamber

Posterior
chamberΓC

ΓL

ΓI

ΓVH

ΓSc

ΩAH

aScott. Physics in Medicine and Biology. (1988), Ng & Ooi. Comput Methods Programs Biomed.
(2006), Li et al. Int J Numer Method Biomed Eng. (2010)...

bWang et al. BioMedical Engineering OnLine. (2016), Dvoriashyna et al. Mathematical Models of
Aqueous Production, Flow and Drainage. (2019)...
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Biophysical Model: Boundary Conditions

▶ Interface conditions:
{

Ti = Tj ,

ki(∇Ti · ni) = −kj(∇Tj · nj)
over ∂Ωi ∩ ∂Ωj .

▶ Robin condition on Γbody: −ki
∂T
∂n = hbl(T − Tbl).

▶ Neumann condition on Γamb:
−ki

∂T
∂n = hamb(T − Tamb) + σε(T 4 − Tamb

4) + E .

Γamb Γbody

aScott. Physics in Medicine and Biology. (1988)
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−ki
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▶ Conditions on velocity:
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ΓVH
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ΩAH

x

y

z
aScott. Physics in Medicine and Biology. (1988)
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Parameter dependent model
Symbol Name Dimension Baseline value Range

Tamb Ambient temperature [K] 298 [283.15, 303.15]
Tbl Blood temperature [K] 310 [308.3, 312]

hamb Ambient air convection coefficient [W m−2 K−1] 10a [8, 100]
hbl Blood convection coefficient [W m−2 K−1] 65b [50, 110]
hr Radiation heat transfer coefficient [W m−2 K−1] 6c –
E Evaporation rate [W m−2] 40c [20, 320]

klens Lens conductivity [W m−1 K−1] 0.4b [0.21, 0.544]
kcornea Cornea conductivity [W m−1 K−1] 0.58d –

ksclera = kiris =
klamina = kopticNerve

Eye envelope
components conductivity [W m−1 K−1] 1.0042e –

kaqueousHumor Aqueous humor conductivity [W m−1 K−1] 0.28d –
kvitreousHumor Vitreous humor conductivity [W m−1 K−1] 0.603c –

kchoroid = kretina Vascular beds conductivity [W m−1 K−1] 0.52f –
ε Emissivity of the cornea [–] 0.975a –

a Mapstone (1968), b J J W Lagendijk (1982), c Scott (1988), d Emery et al. (1975), e Ng & Ooi (2007),
f IT’IS Foundation (2024).
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Parameters and output of interest

▶ Geometrical parameters may play a
rolea, but not considered in this
work.

▶ A parameter: we set
µ = (Tamb, Tbl, hamb, hbl, E , klens)
in Dµ ⊂ R6.

▶ µ̄ ∈ Dµ is the baseline value of
the parameters.

aBhandari. J Control Release. (2021)

▶ Locations of interest based on literaturebc d :

A
B
B1

C D
D1

F
O G

bScott. Physics in Medicine and Biology. (1988)
cNg & Ooi. Comput. Biol. Med. (2007)
dLi et al. Int J Numer Method Biomed Eng. (2010)
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Summary

M

Parameter
input µ

T (µ), u(µ), p(µ), s(µ)

Model MHF(µ)
▶ Heat transfer in the

whole eye,
▶ coupled with AH

fluid dynamics in
the AC and the PC.

Model MH(µ)
▶ Simplified version of
MHF(µ).

▶ Heat transfer in the
whole eye, with

▶ linearized radiative
conditions.

Thomas Saigre Mathematical modeling, simulation, and reduction for ocular flows 20th December 2024 13 / 40



Introduction Models Discrete full order model Reduced order framework Sensitivity analysis Heat coupled with AH flow Conclusion
Discrete geometry Mesh verification High fidelity model Validation and verification

Full order computational framework
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Discrete geometry
▶ Performed with Salome meshing library,

using NETGENameshing algorithm.
▶ The full pipeline to generate the mesh

is available on GitHubb.

▶ The mesh generated by Salome is quite
coarse.

▶ We refine the mesh around the AC and
PC.

▶ For the verification step, we generate a
family of meshes of various refinement.

Figure 3: Geometry of the eye.

aJ. Schöberl. Computing and Visualization in Science. (1997)
bV. Chabannes, C. Prud’homme, T. Saigre, et al. A 3D geometrical model and meshing procedures

for the human eyeball. (2024)
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is available on GitHubb.
▶ The mesh generated by Salome is quite

coarse.

▶ We refine the mesh around the AC and
PC.

▶ For the verification step, we generate a
family of meshes of various refinement.

Figure 3: Original mesh M, 4.64 · 105

tetrahedrons.

aJ. Schöberl. Computing and Visualization in Science. (1997)
bV. Chabannes, C. Prud’homme, T. Saigre, et al. A 3D geometrical model and meshing procedures

for the human eyeball. (2024)
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▶ Performed with Salome meshing library,

using NETGENameshing algorithm.
▶ The full pipeline to generate the mesh

is available on GitHubb.
▶ The mesh generated by Salome is quite

coarse.
▶ We refine the mesh around the AC and

PC.
▶ For the verification step, we generate a

family of meshes of various refinement. Figure 3: Mesh refined around AC and PC Mr,
9.4 · 105 elements.

aJ. Schöberl. Computing and Visualization in Science. (1997)
bV. Chabannes, C. Prud’homme, T. Saigre, et al. A 3D geometrical model and meshing procedures

for the human eyeball. (2024)
Thomas Saigre Mathematical modeling, simulation, and reduction for ocular flows 20th December 2024 15 / 40



Introduction Models Discrete full order model Reduced order framework Sensitivity analysis Heat coupled with AH flow Conclusion
Discrete geometry Mesh verification High fidelity model Validation and verification

Mesh adaptation and refinement

CAD Mesh M

Mesh Mr

Family
M0, ..., M5

Family
Mr0, ..., Mr6

M
esh

refinem
ent

Salome

Mesh adaptation

Figure 4: Pipeline to generate the geometry and mesh families.

▶ All the meshes are available in an open-source repository.
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Mesh adaptation and refinement

CAD Mesh M

Mesh Mr

Family
M0, ..., M5

Family
Mr0, ..., Mr6

M
esh

refinem
ent

Salome

Mesh adaptation

Figure 4: Pipeline to generate the geometry and mesh families.

▶ All the meshes are available in an open-source repositorya.
aT. Saigre et al. Mesh and configuration files to perform coupled heat+fluid simulations on a realistic

human eyeball geometry with Feel++. (2024)
Thomas Saigre Mathematical modeling, simulation, and reduction for ocular flows 20th December 2024 16 / 40



Introduction Models Discrete full order model Reduced order framework Sensitivity analysis Heat coupled with AH flow Conclusion
Discrete geometry Mesh verification High fidelity model Validation and verification

Verification steps: preservation of the volume
▶ Solve a Laplacian problem with manufactured solution and compare convergence

with the FEM theory.
▶ Perform a mesh convergence study to ensure the mesh is well refined.

106 107

7.98

7.99

8

8.01

8.02

M

Mr
M0M1 M2 M3

M4 M5
Mr0 Mr1 Mr2 Mr3

Mr4 Mr5

Number of elements

Vo
lu

m
e

[m
L]

Initial meshes
Family Mi
Family Mri

▶ The volume tends toward a
constant value, around
8.02 mL.

▶ The geometric model
overestimates this value, but
still remains in an acceptable
physiological rangea.

aHeymsfield et al. Anatomy &
Physiology. (2016)
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Continuous and discrete problem MH

MH

Parameter
input µ

T (µ), s(µ)

We set V := H1(Ω).
Problem considered
Given µ ∈ Dµ, evaluate the output of interest

s(µ) = ℓ(T (µ); µ),

where T (µ) ∈ V is the solution of

a(T (µ), v ; µ) = f (v ; µ) ∀v ∈ V .

The bilinear form a(·, ·; µ) and the linear form f (·; µ) are
defined by the variational formulation of the problem.

Thomas Saigre Mathematical modeling, simulation, and reduction for ocular flows 20th December 2024 18 / 40
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Continuous and discrete problem MH

MH

Parameter
input µ

T fem(µ), s(µ)

We set V := H1(Ω).
Problem considered
Given µ ∈ Dµ, evaluate the output of interest

s(µ) = ℓ(T (µ); µ),

where T (µ) ∈ V is the solution of

a(T (µ), v ; µ) = f (v ; µ) ∀v ∈ V .

The bilinear form a(·, ·; µ) and the linear form f (·; µ) are
defined by the variational formulation of the problem.

a(T , v ; µ) = f (v ; µ),
with:
a(T , v ; µ) := klens

∫
Ωlens
∇T · ∇v dx +

∑
i ̸=lens

ki

∫
Ωi
∇T · ∇v dx+∫

Γamb
[hambT + hr T ] v dσ +

∫
Γbody

hblTv dσ

f (v ; µ) :=
∫

Γamb
[hambTamb + hr Tamb − E ] v dσ +

∫
Γbody

hblTblv dσ.
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Continuous and discrete problem MH

Mfem
H

Parameter
input µ

T fem(µ), s(µ)

We set V := H1(Ω). Denote by Vh ⊂ V a finite-dimensional
subspace of V of dimension N .
High-fidelity model
Given µ ∈ Dµ, evaluate the output of interest

s(µ) = ℓ(T fem(µ); µ),

where T fem(µ) ∈ Vh is the solution of

a(T fem(µ), v ; µ) = f (v ; µ) ∀v ∈ Vh.

The bilinear form a(·, ·; µ) and the linear form f (·; µ) are
defined by the variational formulation of the problem.
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Continuous and discrete problem MH

Mfem
H

Parameter
input µ

T fem(µ), s(µ)

High fidelity resolution
Input: µ ∈ Dµ,
▶ Construct A(µ), f (µ) and Lk(µ),
▶ Solve A(µ)T fem(µ) = f (µ),
▶ Compute outputs s(µ) = Lk(µ)T T fem(µ).

Output: Numerical solution T fem(µ) and outputs s(µ).

Thomas Saigre Mathematical modeling, simulation, and reduction for ocular flows 20th December 2024 18 / 40
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High Fidelity model Mfem
H

µ̄ µmin µmax

302 303 304 305 306 307 308 309 310

Figure 5: Distribution of the temperature [K] in the eyeball from the linear model.
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Comparison with previous numerical studies

0 0.5 1 1.5 2 2.5
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Distance from cornea surface [cm]

T
[K

]

Scott (2D, linearized)
Ng & Ooi (2D)
Ng & Ooi (3D)
Li et al. (3D)
Mfem

H (3D)
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Validation: measured values over the GCC
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] Measured valuesa
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H (µ̄) model

aEfron et al. Current Eye Research. (1989)
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Reduced order computational framework
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Model Order Reduction
▶ Goal: replicate input-output behavior of the high fidelity model Mfem

H with a
reduced order model Mrbm

H ,
▶ with a procedure stable and efficient.

Mfem
H (µ)

(high fidelity)

Parameter
input µ

T fem(µ), s(µ)

Mrbm
H (µ)

Parameter
input µ

N ≫ N T rbm,N(µ), sN(µ)
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Model Order Reduction

Mathematical and numerical methods for model order reduction:
▶ Proper orthogonal decompositiona

▶ Reduced Basis methodb

▶ Non-Intrusive Reduced Basisc

▶ Machine learning techniques, such as Physics-Informed Neural Networksd

aKerschen et al. Nonlinear Dynamics. (2005)
bPrud’homme et al. Journal of Fluids Engineering. (2002)
cChakir & Maday. Comptes Rendus Mathématique. (2009)
dRaissi et al. Journal of Computational Physics. (2019)
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Model Order Reduction

Mathematical and numerical methods for model order reduction:
▶ Proper orthogonal decompositiona

▶ Reduced Basis methodb

▶ Non-Intrusive Reduced Basisc

▶ Machine learning techniques, such as Physics-Informed Neural Networksd

aKerschen et al. Nonlinear Dynamics. (2005)
bPrud’homme et al. Journal of Fluids Engineering. (2002)
cChakir & Maday. Comptes Rendus Mathématique. (2009)
dRaissi et al. Journal of Computational Physics. (2019)
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Reduced basis methoda

FE Space Vh

aPrud’homme et al. Journal of Fluids Engineering. (2002)
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Reduced basis methoda

FE Space Vh

T fem(µ)

▶ High fidelity model:
Mfem

H : µ 7→ T fem(µ)
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Reduced basis methoda

FE Space Vh

M = {T fem(µ)|µ ∈ Dµ}

▶ High fidelity model:
Mfem

H : µ 7→ T fem(µ)

▶ Manifold of solutions:
M = {T fem(µ), µ ∈ Dµ}

aPrud’homme et al. Journal of Fluids Engineering. (2002)
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Reduced basis methoda

FE Space Vh

M = {T fem(µ)|µ ∈ Dµ}

T fem(µN)T fem(µ1)

▶ From a set of snapshots
T fem(µ1), · · · , T fem(µN) computed
only once (offline stage), we define
the reduced functional space:

aPrud’homme et al. Journal of Fluids Engineering. (2002)
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Reduced basis methoda

FE Space Vh

VN
ξ1

ξN

T fem(µN)T fem(µ1)

▶ From a set of snapshots
T fem(µ1), · · · , T fem(µN) computed
only once (offline stage), we define
the reduced functional space:

VN = span(ξ1, · · · , ξN)

where ξi = T fem(µi),
is orthonormalized.

aPrud’homme et al. Journal of Fluids Engineering. (2002)
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Reduced basis methoda

FE Space Vh

VN
ξ1

ξN

▶ From a set of snapshots
T fem(µ1), · · · , T fem(µN) computed
only once (offline stage), we define
the reduced functional space:

VN = span(ξ1, · · · , ξN)

where ξi = T fem(µi),
is orthonormalized.

▶ Reduced solution (online stage):
T rbm,N(µ) solution of the PDE
on VN , independant of N .

aPrud’homme et al. Journal of Fluids Engineering. (2002)
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Certified error bound ∆N(µ)a

T rbm,N(µ)
T fem(µ)

FE Space Vh

For µ ∈ Dµ, we define the error:

e(µ) = T fem(µ)− T rbm,N(µ).

We require this error bound to be:
▶ Rigorous: ∥e(µ)∥X ⩽ ∆N(µ),

▶ sharp: ∆N(µ)
∥e(µ)∥X

⩽ ηmax(µ),

▶ efficient: the computation of
∆N(µ) does not depend on N .

aPrud’homme et al. Journal of Fluids
Engineering. (2002)
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We require this error bound to be:
▶ Rigorous: ∥e(µ)∥X ⩽ ∆N(µ),

▶ sharp: ∆N(µ)
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⩽ ηmax(µ),

▶ efficient: the computation of
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Time of execution

Implementation in the Feel++ library.

Finite element resolution Reduced model
T fem(µ) T rbm,N(µ), ∆N(µ)

P1 P2 (np=1) P2 (np=12)

Problem size N = 207 845 N = 1 580 932 N = 10
texec 5.534 s 62.432 s 10.76 s 2.88× 10−4 s

speed-up 11.69 1 5.80 2.17 × 105

Table 1: Times of execution, using mesh M3 for high fidelity simulations.
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Results over a sampling Ξtest ⊂ Dµ of 100 parameters
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Figure 6: Error on RBM for various reduced basis sizes with error bound ∆N(µ).
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Figure 6: Convergence of the errors on the field and the output on point O.
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Pointwise output

▶ We relied on the fact that the output functional ℓ : T 7→ s(T (µ); µ) is continuous
with respect to the solution T .

 In the models considered, the output is the temperature at a specific point, e.g.
ℓ(T (µ)) = δO(T (µ)), which is non-continuous with respect to T .

� Some theoretical and numerical studiesa b were carried on problem of the form{
−∆u = δX0 in Ω,

+various boundary conditions on ∂Ω.

▶ Impact of the position of the Dirac with respect to the boundary of the domain.
▶ Our numerical findings show that the theoretical results are pessimistic.

aKöppl & Wohlmuth. SIAM Journal on Numerical Analysis. (2014)
bBertoluzza et al. Numerical Methods for Partial Differential Equations. (2018)
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Conclusions on Model Order Reduction
▶ Used the Certified Reduced Basis

Method to reduce the computational
cost of the high fidelity model MH.

▶ Implementation returned satisfactory
results of speed-up and accuracy.

Other contributions in the field of model
order reduction:
▶ Implementation of the Non-Intrusive

Reduced Basis Methoda.
▶ Application to the heat transfer model

of the human eye.
aChakir & Maday. Comptes Rendus

Mathématique. (2009)
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Figure 7: Comparison between RBM and NIRB
accuracy, applied to model MH.
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Sensitivity analysis
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Sensitivity analysis

▶ Quantifies the effect of input parameters on the output.
▶ Two studies were carried:

1. Deterministic sensitivity analysis: all parameters are set to their baseline values,
except for one, which varies within the ranges found in the literature,

2. Stochastic sensitivity analysis: all parameters are considered as random variables.
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Sobol’ indicesa

▶ µ = (µ1, . . . , µn) ∈ Dµ,
▶ µi ∼ Xi where (Xi)i is a family of independent random variables.
▶ Distributions Xi selected from data available in the literature.
▶ Output sN(µ) ∼ Y = f (X1, . . . , Xn).

Sobol’ indices

▶ First-order indices: Sj = Var (E [Y |Xj ])
Var(Y )

effect of one parameter on
the output

▶ Total-order indices: Stot
j =

Var
(
E

[
Y |X(−j)

])
Var(Y )

interaction of all parameters
but one on the output

where X(−j) = (X1, . . . , Xj−1, Xj+1, . . . , Xn).

aSobol. Sensitivity Estimates for Nonlinear Mathematical Models. (1993)
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Input parameters distributions
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Stochastic sensitivity analysis

Distributions (Xi)n
i=1

Input sample Ξ
Output sample

Y = {sN(µ), µ ∈ Ξ}
Reduced model

Openturns Sobol’ indices
a

aBaudin et al. Handbook of Uncertainty Quantification. (2016)
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Stochastic sensitivity analysis

hbl hamb Tbl Tamb E klens

0

0.2

0.4

0.6

0.8

1
First order
Total order

Figure 8: Sobol’ indices: temperature at point O.

Temperature at the level of the cornea:
▶ significantly influenced by Tamb,

hamb (external factors) and E , Tbl
(subject specific parameters) −→
need for measurements/better model
for these contributions,

▶ minimally influenced by klens, hbl −→
can be fixed at baseline value,

▶ high order interactions on Tamb,
hamb.

O G
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Stochastic sensitivity analysis
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Figure 8: Sobol’ indices: temperature at point G .

Temperature at the back of the eye:
▶ only influenced by the blood

temperature.

O G
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Heat transfer coupled with aqueous humor flow
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Motivation: Endothelial cells sedimentation

▶ AH flow plays a significant role in heat distribution, and
intraocular pressurea.

▶ Focus on the wall shear stress of the AH.
 Medical application: corneal endothelial cell

sedimentation in the corneab.

aDvoriashyna et al. Ocular Fluid Dynamics. (2019)
bKinoshite et al. N Engl J Med. (2018) (Figure extracted from this

reference)

Thomas Saigre Mathematical modeling, simulation, and reduction for ocular flows 20th December 2024 36 / 40



Introduction Models Discrete full order model Reduced order framework Sensitivity analysis Heat coupled with AH flow Conclusion
Motivation Computational framework Numerical results Wall shear stress ○Ë

Computational framework of MHF

Geometrical
model

Mesh generation
▶ 3D mesh with

4.97 · 106 elements,
▶ Fine mesh

refinement in ΩAH,
where the coupled
model is considered.

Biophysical model MHF

ρ(u · ∇)u − ∇(2µD(u) − pI) = −ρβ(T − Tref)g in ΩAH,

∇ · u = 0 in ΩAH,

ρCpu · ∇T − k∇2T = 0 in Ω.

Finite element solver
▶ Use the Feel++ heatfluid

toolbox using monolithic
approach and PDE based
preconditioning for solving
the non-linear problem,

Ë Model validation and
verification.
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Pressure and velocity: impact of the posture
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Figure 9: Standing position.

▶ Recirculation of the AH,

▶ Formation of a Krukenberg’s
spindle, in good agreement
with clinical observations and
previous studiesabc

▶ Fluid dynamics is strongly
influenced by the position
of the patient.

aWang et al. BioMedical Engineering OnLine. (2016)
bAbdelhafid et al. Recent Devel. in Mathematical,

Statistical and Computational Sciences. (2021)
cMurgoitio-Esandi et al. Translational Vision Science &

Technology. (2023)

Thomas Saigre Mathematical modeling, simulation, and reduction for ocular flows 20th December 2024 38 / 40



Introduction Models Discrete full order model Reduced order framework Sensitivity analysis Heat coupled with AH flow Conclusion
Motivation Computational framework Numerical results Wall shear stress

Pressure and velocity: impact of the posture
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Figure 9: Prone position.

▶ Recirculation of the AH,
▶ Formation of a Krukenberg’s

spindle, in good agreement
with clinical observations and
previous studiesabc

▶ Fluid dynamics is strongly
influenced by the position
of the patient.

aWang et al. BioMedical Engineering OnLine. (2016)
bAbdelhafid et al. Recent Devel. in Mathematical,

Statistical and Computational Sciences. (2021)
cMurgoitio-Esandi et al. Translational Vision Science &

Technology. (2023)
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Figure 9: Supine position.

▶ Recirculation of the AH,
▶ Formation of a Krukenberg’s

spindle, in good agreement
with clinical observations and
previous studiesabc

▶ Fluid dynamics is strongly
influenced by the position
of the patient.

aWang et al. BioMedical Engineering OnLine. (2016)
bAbdelhafid et al. Recent Devel. in Mathematical,

Statistical and Computational Sciences. (2021)
cMurgoitio-Esandi et al. Translational Vision Science &

Technology. (2023)
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Wall shear stress
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Figure 10: Wall shear stress distribution on the corneal endothelium for the three postural
orientations.
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Wall shear stress

▶ The WSS distribution is impacted by the
postural orientation and the ambient
temperature.

▶ Application: Control the temperature to
enhance the diffusion and the sedimentation of
the cells during the treatment. 280 300 320
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Figure 10: Mean wall shear stress on
the corneal surface.
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Conclusion and perspectives

 Heat transport model in the human eye: FEM simulations, validation against
experimental data,

 Reduced model with a certified error bound,
 Sensitivity analysis: computation of Sobol’ indices, highlight of the impact of

some parameters on the outputs of interest.

� T. Saigre, C. Prud’homme, M. Szopos. Model order reduction and sensitivity analysis for complex heat
transfer simulations inside the human eyeball. Int J Numer Methods Biomed Eng. (2024)

� T. Saigre, C. Prud’homme, M. Szopos. Associated dataset (publicly available).
DOI: 10.5281/ZENODO.13907890 Zenodo. (2024)
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Conclusion and perspectives

 Couple heat transfer with AH dynamics: assess the impact of postural
orientation and environmental conditions on the flow and its properties.

� T. Saigre, V. Chabannes, C. Prud’homme, M. Szopos. A coupled fluid-dynamics-heat transfer model for 3D
simulations of the aqueous humor flow in the human eye. CMBE2024 Proceedings. (2024)

� T. Saigre, C. Prud’homme, M. Szopos, V. Chabannes. Mesh and configuration files to perform coupled
heat+fluid simulations on a realistic human eyeball geometry with Feel++,
DOI: 10.5281/ZENODO.13886143 Zenodo. (2024)

 Mathematical modeling of microbiota and PINNs: CEMRACS 2023 project.
� P. Hossie, B. Laroche, T. Malou, L. Perrin, T. Saigre, L. Sala. Surrogate modeling of interactions in

microbial communities through Physics-Informed Neural Networks. ESAIM: Proceegings and Surveys.
(2024)
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Conclusion and perspectives
▶ Enhance the model:

▶ Geometrical model: take into account geometrical parameters,
▶ Fluid dynamics: modeling the production and drainage of aqueous humor to assess

their impact.
 Clinical perspective: assess the corneal cell sedimentation after injection.
� T. Saigre, V. Chabannes, G. Guidoboni, C. Prud’homme, M. Szopos, SP. Srinivas. Effect of Cooling of the

Ocular Surface on Endothelial Cell Sedimentation in Cell Injection Therapy: Insights from Computational
Fluid Dynamics. (2024), submitted to ARVO 2025 meeting.

▶ Steps towards a digital twin of the eye:
▶ incorporate patient-specific data,
▶ enhance predictive modeling and personalized medical applications.

Thank you for your attention!
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Linearization of the radiative transfer equationa

−k ∂T
∂n = hamb(T − Tamb)︸ ︷︷ ︸

(i)

+ σε(T 4 − T 4
amb)︸ ︷︷ ︸

(ii)

+ E︸︷︷︸
(iii)

on Γamb.

(i) Convective heat transfer.
(ii) Radiative heat transfer.
(iii) Tear evaporation.

−k ∂Ti
∂n = hamb(T − Tamb) + hr(T − Tamb) + E on Γamb,

with hr = 6 W m−2 K−1.

aScott Physics in Medicine and Biology. (1988)
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Linearization of the radiative transfer equation
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Figure 11: Difference of the temperature between the full model and the linearized model.
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Mesh convergence for the high-fidelity model
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Figure 12: Temperature at the center of the cornea computed with the high-fidelity model
ENL(µ̄), depending on the level of mesh refinement.
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Deterministic sensitivity analysis

▶ We choose one parameter among the 6 parameters of the model,
▶ We fix the other ones to their baseline value,
▶ We make the selected parameter vary to study the impact of this single parameter

on the output of the model.
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Deterministic sensitivity analysis
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Figure 13: Effect of hamb at point O
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Deterministic sensitivity analysis
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Figure 13: Point O (Current model, Ng & Ooi, Scott, Li et al.)
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Deterministic sensitivity analysis
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Laplacian problem with Dirac source
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Laplacian problem with Dirac source
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Verifications and validations of the coupled heat-fluid model: mesh
convergence
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Verifications and validations of the coupled heat-fluid model

Author Tamb No AH flow AH flow coupled
Prone Supine Standing

Scott (2D) 293.15 306.4 – – –

Ooi & Ng (2D) 298 306.45 – – 306.9

Karampatzakis & Samaras
(3D)

293 306.81 – – 307.06
296 307.33 – – 307.51
298 307.69 – – 307.83

Current model (3D)
293 306.5647 306.56915 306.55899 306.63672
296 307.09845 307.10175 307.09436 307.14651
298 307.45746 307.46008 307.45432 307.49222
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Verifications and validations of the coupled heat-fluid model

Position Reference Maximum velocity Average velocity Pressure
[m s−1] [m s−1] [mmHg]

Supine

Wang et al. 9.44 · 10−4 4.1 · 10−5 13.50 – 13.58
Murgoitio-Esandi et al. 6 · 10−5 n/a n/a

Bhandari et al. n/a 9.88 · 10−6 n/a
Current model 2.59 · 10−5 3.21 · 10−6 15.42 – 15.59

Standing
Wang et al. 9.6 · 10−4 2.5 · 10−4 13.50 – 13.59

Bhandari et al. n/a 5.88 · 10−5 n/a
Current model 2.76 · 10−4 5.23 · 10−5 15.28 – 15.72
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Preconditioning of the non-linear coupled heat-fluid model

 Ã BT D
B 0 0
E 0 F̃


 ∆u

∆p
∆T

 =

 ru
rp
rT

 ⇐⇒:
[

K0,0 K0,1
K1,0 K1,1

]
︸ ︷︷ ︸

=:K

[
∆fluid
∆heat

]
=

[
rfluid
rheat

]
.

The main idea of additive fieldsplit preconditioner is to approximate the inverse of the
matrix K by the matrix [

K−1
0,0 0
0 K−1

1,1

]
,

where the inverses of the diagonal blocks are applied separately, with appropriate solvers
and associated preconditioners.
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The main idea of additive fieldsplit preconditioner is to approximate the inverse of the
matrix K by the matrix [

K−1
0,0 0
0 K−1

1,1

]
,

where the inverses of the diagonal blocks are applied separately, with appropriate solvers
and associated preconditioners.

K−1
0,0 ≈

[
I −Ã−1BT

0 I

] [
Ã−1 0

0 S−1

]
,

where S = −B Ã−1BT .
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Reduced Basis Method
Problem considered
Given µ ∈ Dµ, evaluate the output of inter-
est

sN(µ) = ℓ(T rbm,N(µ); µ)

where T rbm,N(µ) ∈ VN is the solution of

a(T rbm,N(µ), v ; µ) = f (v ; µ) ∀v ∈ VN

▶ Snapshots matrix:
ZN = [ξ1, · · · , ξN ] ∈ RN ×N ,

▶ Projection onto VN :
AN(µ) := ZT

N A(µ)ZN ∈ RN×N and

fN(µ) := ZT
N f (µ) ∈ RN ,

Reduced basis resolution
Input: µ ∈ Dµ,
▶ Construct AN(µ), fN(µ) and LN,k(µ),
▶ Solve AN(µ)T rbm,N(µ) = fN(µ),
▶ Compute outputs

sN,k(µ) = LN,k(µ)T T rbm,N(µ).
Output: Numerical solution T rbm,N(µ) and
outputs sN,k(µ).
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Affine decompositiona

▶ We want to write A(µ) =
Qa∑

q=1
βq

A(µ)Aq, and F (µ) =
Qf∑

q=1
βq

F (µ)Fq.

▶ Compute and store Aq
N = ZT

N AqZN︸ ︷︷ ︸
independent of µ

and Fq
N = ZT

N Fq.

▶ Hence, AN(µ) =
Qa∑

q=1
βq

A(µ)Aq
N and FN(µ) =

Qf∑
q=1

βq
F (µ)Fq

N .

aPrud’homme et al. Journal of Fluids Engineering. (2002)
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Affine decompositiona

▶ We want to write A(µ) =
Qa∑

q=1
βq

A(µ)Aq, and F (µ) =
Qf∑

q=1
βq

F (µ)Fq.

▶ Compute and store Aq
N = ZT

N AqZN and Fq
N = ZT

N Fq.

▶ a(T , v ; µ) =
4∑

q=1
βq

A(µ)aq(T , v) with

β1
A(µ) = klens a1(T , v) =

∫
Ωlens
∇T · ∇v dx

β2
A(µ) = hamb a2(T , v) =

∫
Γamb

Tv dσ

β3
A(µ) = hbl a3(T , v) =

∫
Γbody

Tv dσ

β4
A(µ) = 1 a4(T , v) =

∫
Γamb

hr Tv dσ +
∑

i ̸=lens ki
∫

Ωi
∇T · ∇v dx

aPrud’homme et al. Journal of Fluids Engineering. (2002)
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Affine decompositiona

▶ We want to write A(µ) =
Qa∑

q=1
βq

A(µ)Aq, and F (µ) =
Qf∑

q=1
βq

F (µ)Fq.

▶ Compute and store Aq
N = ZT

N AqZN and Fq
N = ZT

N Fq.

▶ f (v ; µ) =
2∑

p=1
βp

F (µ)f p(v)

β1
F (µ) = hambTamb + hr Tamb − E f 1(v) =

∫
Γamb

v dσ

β2
F (µ) = hblTbl f 2(v) =

∫
Γbody

v dσ

aPrud’homme et al. Journal of Fluids Engineering. (2002)
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Offline / Online procedure
Offline:
▶ Solve N high-fidelity systems depending on N to form ZN ,
▶ Form and store Fp

N(ξi)
▶ Form and store Aq

N(ξi)

Online: independant of N
Given a new parameter µ ∈ Dµ,
▶ Form AN(µ) : O(QaN2),
▶ Form FN(µ) : O(Qf N),
▶ Solve AN(µ)T rbm,N(µ) = FN(µ) : O(N3),
▶ Compute sN(µ) = LN(µ)T T rbm,N(µ) : O(N).
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Error bounda ∆N(µ)

Such an error bound can be constructed efficiently from the residual r of the variational
problem:

r(v , µ) := ℓ(v ; µ)− a(T rbm,N(µ), v ; µ) ∀v ∈ V

a lower bound αlb(µ) of the coercivity constant α(µ) of a(·, ·; µ), and the affine
decomposition of a and f :

∆s
N(µ) := ∥r(·, µ)∥2V ′

αlb(µ)

aPrud’homme et al. Journal of Fluids Engineering. (2002)
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Greedy algorithm

Algorithm 1: Greedy algorithm to construct the reduced basis.

Input: µ0 ∈ Dµ, Ξtrain ⊂ Dµ and εtol > 0
S ← [µ0];
while ∆max

N > εtol do
µ⋆ ← arg max

µ∈Ξtrain

∆N(µ) (and ∆max
N ← max

µ∈Ξtrain
∆N(µ));

VN+1 ←
{

ξ = T fem(µ⋆)
}
∪ VN ;

Append µ⋆ to S;
N ← N + 1;

end
Output: Sample S, reduced basis VN
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NIRB methoda

External
solver

Snapshots
uh(µ1), · · · , uh(µN)

computed on a fine mesh Th

Reduced basis
ξ1, · · · , ξN

Coarse solution uH(µ)
computed on coarse mesh TH

NIRB approximation uN
Hh(µ)

Offline Online

L2–projection

aChakir & Maday Comptes Rendus Mathématique. (2009)
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NIRB methoda

Instead of solving the system AN(µ)UN
h (µ) = FN(µ) in the online stage and construct

the solution by :

uN
h (µ) =

N∑
i=1

UN
h,i(µ)ξi

Let’s denote by ΠNuh the L2- projection of FE approximation uh in the space XN
h :

ΠNuh(µ) =
N∑

i=1
αN,h

i (µ)ξi

Due to the orhtonormalization of basis function ξi , αN,h
i (µ) are defined by :

αN,h
i (µ) = ⟨uh(µ), ξi⟩L2

aChakir & Maday Comptes Rendus Mathématique. (2009)
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▶ Coarse triangulation : {TH}H with H ≫ h,
▶ new finite element space : XH such that NH = dim(XH)≪ dim(Xh) = Nh,
▶ the computation of uH(µ) ∈ XH is less expensive than the one of uh(µ) ∈ Xh

The NIRB method consists in proposing another alternative of αN,h
i (µ) defined by :

αN,H
i (µ) = ⟨uH(µ), ξi⟩L2 ,

with uH(µ), an approximate solution of the high-fidelity problem in the coarse
triangulation.
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Neural Networks

▶ Neural Network: NN : x ∈ Rp 7→ y ∈ Rq

▶ NN(x) = fp ◦ σ ◦ fp−1 ◦ σ ◦ · · · ◦ f1(x), where:
▶ fi are affine functions fi(x) = W ix + bi
▶ σ is a non-linear activation function (e.g. sigmoid, ReLu...).

▶ Θ = (W 1, b1, . . . , W p, bp).

Density of neural networksa

The space of neural networks functions with 1 hidden layer (p = 1) is dense in the space
of continuous functions on a compact set, for the norm ∥ · ∥∞.

x1

y1

y2

aCybenko Mathematics of Control, Signals, and Systems. (1989)
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Neural Networks: training

▶ Set of data: D = {(xj , yj)}Nj=1

▶ Loss function: Loss(Θ) =
∑

(x,y)∈D

∣∣∣NNΘ(x)− y
∣∣∣2

▶ Optimization: look for Θ⋆ = arg min
Θ

Loss(Θ)

▶ Least square theorem: The solution exists. It is unique if the data is linearly
independent.
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Physics-Informed Neural Networksa

▶ Combines both unsupervised and
supervised learning.

▶ Trained to solve learning tasks while
respecting a law given here by the
ODE / PDE and provided data.

▶ « Loss = Lossmodel + Lossdata »

t

Input size = 3 size = 5 size = 5

u1

u2

u3

Output

aRaissi et al. Journal of Computational Physics. (2019)
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