Toward digital twins for ocular applications: mathematical modeling, simulation and order reduction

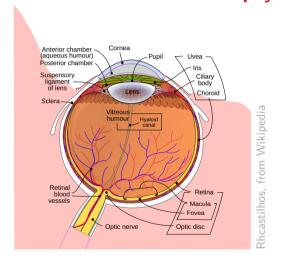
Thomas Saigre¹, Christophe Prud'homme¹, Marcela Szopos²

¹Institut de Recherche Mathématique Avancée, UMR 7501 Université de Strasbourg et CNRS

²Université Paris Cité, CNRS, MAP5, F-75006 Paris, France

Colloquium CASA Eindhoven 18th June 2025

Motivation: understand ocular **physiology** and **pathology**



- The eye is a complex organ, with a multilayered structure, numerous multiscale and multiphysics phenomena involved.
- Measurements: complex to perform on human subjects^a, scarce data, mostly available on surface^b.
- Present work: focus on heat transfer and aqueous humor flow dynamics.

^aRosenbluth & Fatt. Exp. Eye Res. (1977)

^bPurslow & Wolffsohn. Eye Contact Lens. (2005)

Motivation: understand ocular physiology and pathology

- ► The anterior chamber (AC) is filled with aqueous humor (AH), whose dynamics is crucial for the ocular health^a.
- understand the AH flow dynamics and heat transfer is important for drug distribution^b, and therapeutic interventions (laser treatment, corneal cell sedimentation^c, etc.).

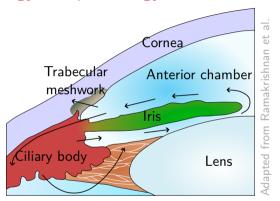


Figure 1: Production and drainage of AH in the eye.

Introduction

^aDvoriashyna et al. Ocular Fluid Dynamics. (2019)

^bBhandari. J Control Release. (2021)

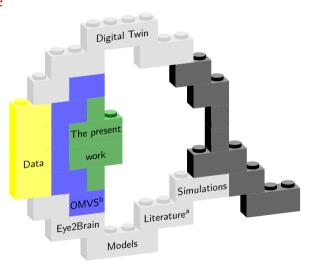
^cKinoshita et al. N Engl J Med. (2018)

Aim: build a digital twin of the eye

Models

Introduction

- ► State-of-the-art: digital models^a of the eye.
- ► Toward a digital shadow: data from previous studies and measurements to validate and enhance the models.
- Final goal: a **digital twin** = virtual replica of the eye, in real-time connection with the physical entity.



^aScott (1988), Ng et al. (2007), Dvoriashyna et al. (2019)...

^bSala et al. Int J Numer Methods Biomed Eng. (2023)

Discrete full order model Reduced order framework Sensitivity analysis Heat coupled with AH flow Concl

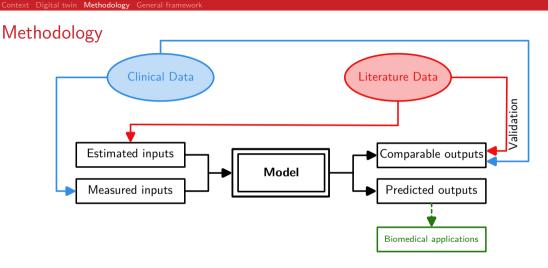


Figure 2: Methodology for the development of patient-specific models, adapted from a.

Introduction

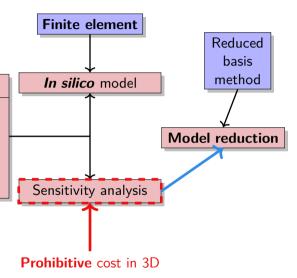
Models

^aSala et al. International Journal for Numerical Methods in Biomedical Engineering. (2023)

General framework

Model complexity

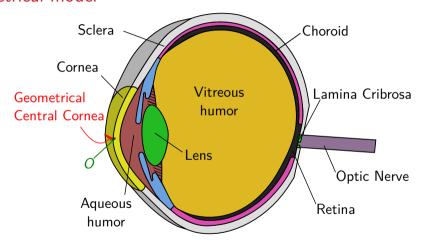
- Monophysics-Multiphysics problem
- Numerous parameters and scarce experimental data
- Influence of multiple risk factors or a combination of them



Mathematical modeling of heat transfer and aqueous humor flow mechanisms in the eye

Introduction **Models** Discrete full order model Reduced order framework Sensitivity analysis Heat coupled with AH flow Concl Geometrical model Biophysical model Parameter-dependent model

Geometrical model^a



^aSala et al. The ocular mathematical virtual simulator: A validated multiscale model for hemodynamics and biomechanics in the human eye. Int J Numer Method Biomed Eng. (2023)

Biophysical model^{ab}

- Incompressible fluid, constant density,
- ► The steady flow of the aqueous humor is governed by the Navier-Stokes equations:

Navier-Stokes equations

$$\rho(\mathbf{u} \cdot \nabla)\mathbf{u} - \nabla \cdot (2\mu \underline{\underline{\mathbf{D}}}(\mathbf{u}) - \rho \underline{\underline{\mathbf{I}}}) = -\rho\beta(T - T_{\mathsf{ref}})\mathbf{g}$$

Incompressibility

$$\nabla \cdot \boldsymbol{u} = 0$$

Heat transfer equation
$$ho \, \mathcal{C}_{p} oldsymbol{u} \cdot
abla \, T - k_{i}
abla^{2} T = 0$$

Anterior chamber. Posterior chamber Boussinesq approximation in Ω_{AH} , in $\Omega = [] \Omega_i$.

⁺ Boundary and Interface conditions. ^aScott. Physics in Medicine and Biology. (1988), Ng & Ooi. Comput Methods Programs Biomed. (2006), Li et al. Int J Numer Method Biomed Eng. (2010)...

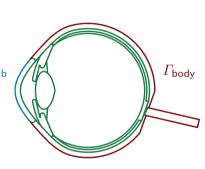
Wang et al. BioMedical Engineering OnLine. (2016), Dvoriashyna et al. Mathematical Models of Aqueous Production, Flow and Drainage. (2019)...

- Interface conditions: $\begin{cases} T_i = T_j, \\ k_i(\nabla T_i \cdot \mathbf{n}_i) = -k_j(\nabla T_j \cdot \mathbf{n}_j) \end{cases}$ over $\partial \Omega_i \cap \partial \Omega_i$.
- ▶ Robin condition on Γ_{body} : $-k_i \frac{\partial T}{\partial \mathbf{n}} = h_{\text{bl}} (T T_{\text{bl}})$. Γ_{amb}
- Neumann condition on Γ_{amb} :

$$-k_i \frac{\partial T}{\partial \mathbf{n}} = h_{\text{amb}}(T - T_{\text{amb}}) + \sigma \varepsilon (T^4 - T_{\text{amb}}^4) + E.$$

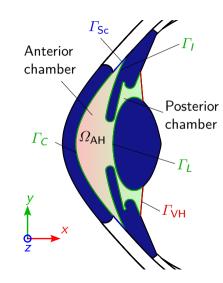
► Conditions on velocity:

$$\mathbf{u} = \mathbf{0}$$
 on $\Gamma_C \cup \Gamma_I \cup \Gamma_I \cup \Gamma_{VH} \cup \Gamma_{SC}$.



Biophysical Model: Boundary Conditions

- ► Interface conditions: $\begin{cases} T_i = T_j, \\ k_i(\nabla T_i \cdot \mathbf{n}_i) = -k_i(\nabla T_i \cdot \mathbf{n}_i) \end{cases}$ over $\partial \Omega_i \cap \partial \Omega_i$.
- ▶ Robin condition on Γ_{body} : $-k_i \frac{\partial T}{\partial \mathbf{p}} = h_{\text{bl}}(T T_{\text{bl}})$.
- Linearized Neumann condition^a on Γ_{amb} : $-k_i \frac{\partial T_i}{\partial \mathbf{n}} = h_{\text{amb}}(T - T_{\text{amb}}) + h_{\text{r}}(T - T_{\text{amb}}) + E,$ with $h_r = 6 \text{ W m}^{-2} \text{ K}^{-1}$.
- Conditions on velocity: $\mathbf{u} = \mathbf{0}$ on $\Gamma_C \cup \Gamma_I \cup \Gamma_I \cup \Gamma_{VH} \cup \Gamma_{SC}$.



Models

Introduction

^aScott. Physics in Medicine and Biology. (1988)

Parameter dependent model

Symbol	Name	Dimension	Baseline value	Range
T_{amb}	Ambient temperature	[K]	298	[283.15, 303.15]
T_{bl}	Blood temperature	[K]	310	[308.3, 312]
h_{amb}	Ambient air convection coefficient	$[{ m W}{ m m}^{-2}{ m K}^{-1}]$	10 ^a	[8, 100]
$h_{ m bl}$	Blood convection coefficient	$[{ m W}{ m m}^{-2}{ m K}^{-1}]$	65 ^b	[50, 110]
h_{r}	Radiation heat transfer coefficient	$[{ m W}{ m m}^{-2}{ m K}^{-1}]$	6 ^c	_
E	Evaporation rate	$[\mathrm{W}\mathrm{m}^{-2}]$	40°	[20, 320]
k_{lens}	Lens conductivity	$[{\sf W}{\sf m}^{-1}{\sf K}^{-1}]$	0.4 ^b	[0.21, 0.544]
k_{cornea}	Cornea conductivity	$[{\sf W}{\sf m}^{-1}{\sf K}^{-1}]$	0.58 ^d	_
$k_{ m sclera} = k_{ m iris} = k_{ m lamina} = k_{ m opticNerve}$	Eye envelope components conductivity	$[{\rm W}{\rm m}^{-1}{\rm K}^{-1}]$	1.0042 ^e	-
$k_{aqueousHumor}$	Aqueous humor conductivity	$[{ m W}{ m m}^{-1}{ m K}^{-1}]$	0.28 ^d	_
k _{vitreousHumor}	Vitreous humor conductivity	$[W m^{-1} K^{-1}]$	0.603 ^c	_
$k_{\sf choroid} = k_{\sf retina}$	Vascular beds conductivity	$[{\sf W}{\sf m}^{-1}{\sf K}^{-1}]$	0.52 ^f	_
arepsilon	Emissivity of the cornea	[-]	0.975 ^a	_

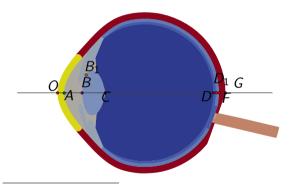
^a Mapstone (1968), ^b J J W Lagendijk (1982), ^c Scott (1988), ^d Emery et al. (1975), ^e Ng et al. (2007), f IT'IS Foundation (2024).

Introduction Models Discrete full order model Reduced order framework Sensitivity analysis Heat coupled with AH flow Cor Geometrical model Biophysical model Parameter-dependent model

Parameters and output of interest

- Geometrical parameters may play a role^a, but not considered in this work.
- ▶ A parameter: we set $\mu = (T_{\text{amb}}, T_{\text{bl}}, h_{\text{amb}}, h_{\text{bl}}, E, k_{\text{lens}})$ in $D^{\mu} \subset \mathbb{R}^{6}$.
- $\bar{\mu} \in D^{\mu}$ is the **baseline value** of the parameters.

► Locations of interest based on literature bcd:



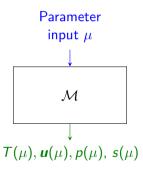
^bScott. Physics in Medicine and Biology. (1988)

^aBhandari. J Control Release. (2021)

^cNg & Ooi. Comput. Biol. Med. (2007)

^dLi et al. Int J Numer Method Biomed Eng. (2010)

Models



Model $\mathcal{M}_{\mathsf{HF}}(\mu)$

- ► **Heat transfer** in the whole eye,
- coupled with AH fluid dynamics in the AC and the PC.

Model $\mathcal{M}_{\mathsf{H}}(\mu)$

- Simplified version of $\mathcal{M}_{HF}(\mu)$.
- ► **Heat transfer** in the whole eye, with
- linearized radiative conditions.

Full order computational framework

Discrete full order model Reduced order framework Discrete geometry Mesh verification High fidelity model Validation and verification

Discrete geometry

Models

- Performed with Salome meshing library, using NETGEN^ameshing algorithm.
- ► The full pipeline to generate the mesh is available on GitHub^b.

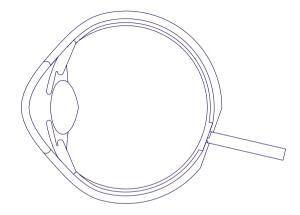


Figure 3: Geometry of the eve.

^aJ. Schöberl. Computing and Visualization in Science. (1997)

^bV. Chabannes, C. Prud'homme, T. Saigre, et al. A 3D geometrical model and meshing procedures for the human eyeball. (2024) github.com/feelpp/mesh.eye

Introduction Models **Discrete full order model** Reduced order framework Sensitivity analysis Heat coupled with AH flow

Discrete geometry Mesh verification High fidelity model Validation and verification

Discrete geometry

- Performed with Salome meshing library, using NETGEN^a meshing algorithm.
- ► The full pipeline to generate the mesh is available on GitHub^b.
- ► The mesh generated by Salome is quite coarse.

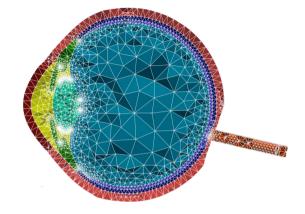


Figure 3: Original mesh M, $4.64 \cdot 10^5$ tetrahedrons.

^aJ. Schöberl. Computing and Visualization in Science. (1997)

Introduction Models **Discrete full order model** Reduced order framework Sensitivity analysis Heat coupled with AH f **Discrete geometry** Mesh verification High fidelity model Validation and verification

Discrete geometry

- Performed with Salome meshing library, using NETGEN^a meshing algorithm.
- ► The full pipeline to generate the mesh is available on GitHub^b.
- ► The mesh generated by Salome is quite coarse.
- We refine the mesh around the AC and PC.
- For the verification step, we generate a family of meshes of various refinement.

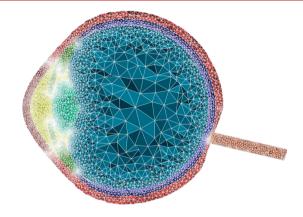


Figure 3: Mesh refined around AC and PC Mr, $9.4 \cdot 10^5$ elements.

^aJ. Schöberl. Computing and Visualization in Science. (1997)

Discrete full order model Reduced order framework Sensitivity analysis Heat coupled with AH flow Conc

Mesh adaptation and refinement

Models

Discrete geometry

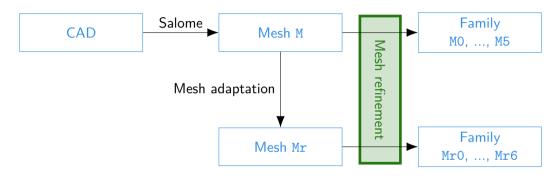


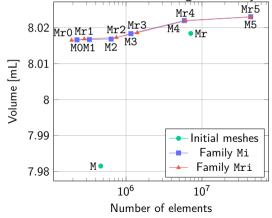
Figure 4: Pipeline to generate the geometry and mesh families.

▶ All the meshes are available in an open-source repository^a.

^aT. Saigre *et al.* Mesh and configuration files to perform coupled heat+fluid simulations on a realistic human eyeball geometry with Feel++. (2024)

► Solve a Laplacian problem with manufactured solution and compare convergence with the FEM theory.

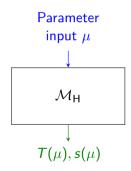
▶ Perform a mesh convergence study to ensure the mesh is well refined.



- ► The volume tends toward a constant value, around 8.02 mL.
- The geometric model overestimates this value, but still remains in an acceptable physiological range^a.

^aHeymsfield *et al.* Anatomy & Physiology. (2016)

Continuous and discrete problem \mathcal{M}_{H}



We set $V := H^1(\Omega)$.

Problem considered

Given $\mu \in D^{\mu}$, evaluate the output of interest

$$s(\mu) = \ell(T(\mu); \mu),$$

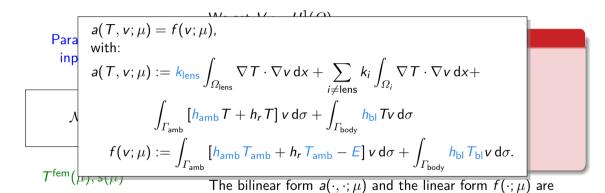
where $T(\mu) \in V$ is the solution of

$$a(T(\mu), v; \mu) = f(v; \mu) \quad \forall v \in V.$$

The bilinear form $a(\cdot, \cdot; \mu)$ and the linear form $f(\cdot; \mu)$ are defined by the variational formulation of the problem.

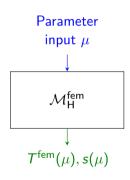
defined by the variational formulation of the problem.

Continuous and discrete problem \mathcal{M}_{H}



Toward digital twins for ocular applications

Continuous and discrete problem \mathcal{M}_{H}



Models

We set $V := H^1(\Omega)$. Denote by $V_h \subset V$ a finite-dimensional subspace of V of dimension \mathcal{N} .

High-fidelity model

Given $\mu \in D^{\mu}$, evaluate the output of interest

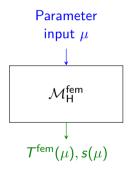
$$s(\mu) = \ell(T^{\mathsf{fem}}(\mu); \mu),$$

where $T^{\text{fem}}(\mu) \in V_h$ is the solution of

$$a(T^{\mathsf{fem}}(\mu), v; \mu) = f(v; \mu) \quad \forall v \in V_h.$$

The bilinear form $a(\cdot,\cdot;\mu)$ and the linear form $f(\cdot;\mu)$ are defined by the variational formulation of the problem.

Continuous and discrete problem \mathcal{M}_H



High fidelity resolution

Input: $\mu \in D^{\mu}$,

- ► Construct $\underline{\underline{\mathbf{A}}}(\mu)$, $f(\mu)$ and $\mathbf{L}_k(\mu)$,
- ► Solve $\underline{\underline{\boldsymbol{A}}}(\mu) \, \boldsymbol{T}^{\text{fem}}(\mu) = \boldsymbol{f}(\mu)$,
- ightharpoonup Compute outputs $s(\mu) = \mathbf{L}_k(\mu)^T \mathbf{T}^{\text{fem}}(\mu)$.

Output: Numerical solution $T^{\text{fem}}(\mu)$ and outputs $s(\mu)$.

stroduction Models **Discrete full order model** Reduced order framework Sensitivity analysis Heat coupled with AH flow Conclusions iscrete geometry. Mesh verification High fidelity model. Validation and verification

High Fidelity model $\mathcal{M}_{H}^{\text{fem}}$

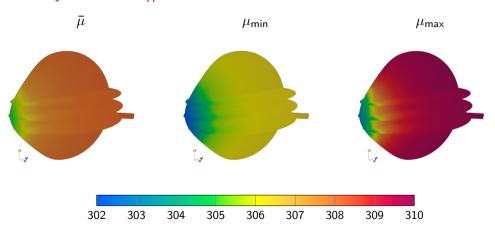
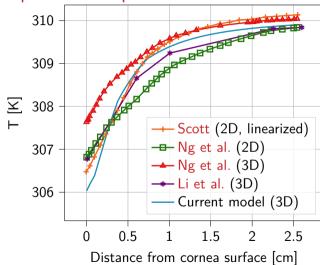
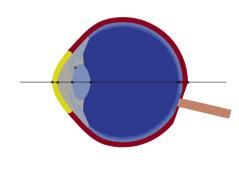


Figure 5: Distribution of the temperature [K] in the eyeball from the linear model.

Discrete full order model Reduced order framework Sensitivity analysis Heat coupled with AH flow Conclusion ation High fidelity model Validation and verification P₁ vs. P₂

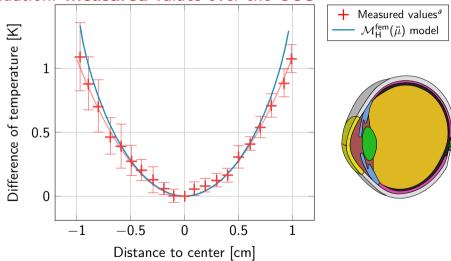
Comparison with previous **numerical** studies





Models

Validation: **measured** values over the GCC

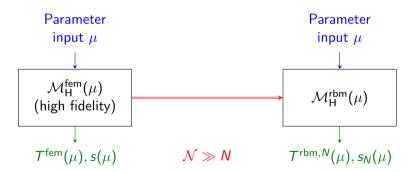


^aEfron et al. Current Eye Research. (1989)

Reduced order computational framework

Model Order Reduction

- ▶ **Goal:** replicate input-output behavior of the high fidelity model $\mathcal{M}_{H}^{\text{fem}}$ with a reduced order model $\mathcal{M}_{H}^{\text{rbm}}$,
- with a procedure stable and efficient.



Model Order Reduction

Mathematical and numerical methods for model order reduction.

- Proper orthogonal decomposition^a
- Certified Reduced Basis method^b
- Non-Intrusive Reduced Basis^c
- Machine learning techniques, such as Physics-Informed Neural Networks^d

20 / 37

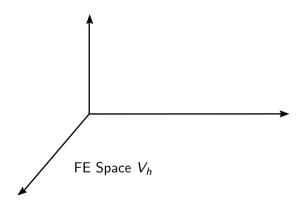
^aKerschen et al. Nonlinear Dynamics. (2005)

^bPrud'homme et al. Journal of Fluids Engineering. (2002)

^cChakir & Maday. Comptes Rendus Mathématique. (2009)

^dRaissi et al. Journal of Computational Physics. (2019)

Reduced basis method^a

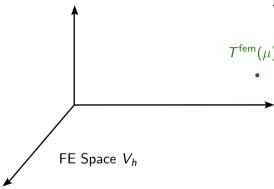


21 / 37

^aPrud'homme et al. Journal of Fluids Engineering. (2002)

Models

High fidelity model: $\mathcal{M}_{H}^{\text{fem}} : \mu \mapsto \mathcal{T}^{\text{fem}}(\mu)$



^aPrud'homme et al. Journal of Fluids Engineering. (2002)

Reduced basis method^a

$$\mathcal{M} = \{T^{\mathsf{fem}}(\mu) | \mu \in D^{\mu} \}$$

High fidelity model:

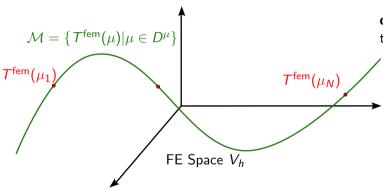
$$\mathcal{M}_{\mathsf{H}}^{\mathsf{fem}} \colon \mu \mapsto \mathcal{T}^{\mathsf{fem}}(\mu)$$

Manifold of solutions:

$$\mathcal{M} = \{ T^{\mathsf{fem}}(\mu), \mu \in D^{\mu} \}$$

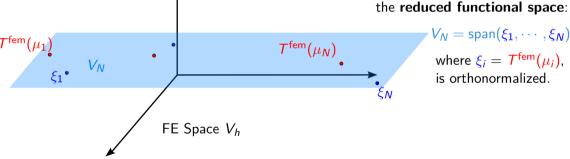
^aPrud'homme et al. Journal of Fluids Engineering. (2002)

Reduced basis method^a



From a set of snapshots $T^{\text{fem}}(\mu_1), \cdots, T^{\text{fem}}(\mu_N)$ computed only once (offline stage), we define the reduced functional space:

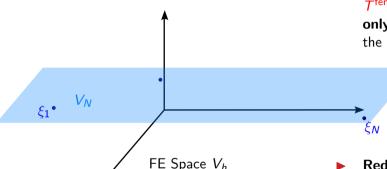
Reduced basis method^a



where $\xi_i = T^{\text{fem}}(\mu_i)$, is orthonormalized.

^aPrud'homme et al. Journal of Fluids Engineering. (2002)

Models



From a set of **snapshots** $T^{\text{fem}}(\mu_1), \dots, T^{\text{fem}}(\mu_N)$ computed **only once** (*offline stage*), we define the **reduced functional space**:

$$V_N = \operatorname{span}(\xi_1, \dots, \xi_N)$$

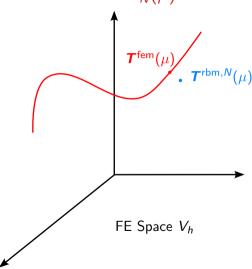
where $\xi_i = T^{\text{fem}}(\mu_i)$, is orthonormalized.

Reduced solution (online stage): $T^{\mathrm{rbm},N}(\mu)$ solution of the PDE on V_N , independent of \mathcal{N} .

^aPrud'homme et al. Journal of Fluids Engineering. (2002)

Certified error bound $\Delta_N(\mu)^a$

Models



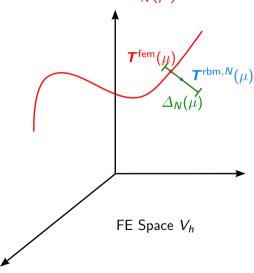
For $\mu \in D^{\mu}$, we define the error:

$$e(\mu) = \mathbf{T}^{\mathsf{fem}}(\mu) - \mathbf{T}^{\mathsf{rbm},N}(\mu).$$

^aPrud'homme et al. Journal of Fluids Engineering. (2002)

Certified error bound $\Delta_N(\mu)^a$

Models



For $\mu \in D^{\mu}$, we define the error:

$$e(\mu) = \mathbf{T}^{\mathsf{fem}}(\mu) - \mathbf{T}^{\mathsf{rbm}, N}(\mu).$$

We require this error bound to be:

- ▶ Rigorous: $||e(\mu)||_{Y} \leq \Delta_{N}(\mu)$,
- ► sharp: $\frac{\Delta_N(\mu)}{\|e(\mu)\|_Y} \leqslant \eta_{\text{max}}(\mu)$,
- efficient: the computation of $\Delta_N(\mu)$ does not depend on \mathcal{N} .

^aPrud'homme et al Journal of Fluids Engineering. (2002)

Greedy algorithm

Algorithm 1: Greedy algorithm to construct the reduced basis.

$$\begin{split} & \text{Input: } \mu_0 \in D^\mu, \ \varXi_{\mathsf{train}} \subset D^\mu \ \text{and } \varepsilon_{\mathsf{tol}} > 0 \\ & S \leftarrow [\mu_0]; \\ & \text{while } \Delta_N^{\mathsf{max}} > \varepsilon_{\mathsf{tol}} \ \mathbf{do} \\ & \qquad \qquad \qquad \mu^\star \leftarrow \mathop{\arg\max}_{\mu \in \varXi_{\mathsf{train}}} \Delta_N(\mu) \ (\text{and } \Delta_N^{\mathsf{max}} \leftarrow \mathop{\max}_{\mu \in \varXi_{\mathsf{train}}} \Delta_N(\mu)); \\ & V_{N+1} \leftarrow \left\{ \boldsymbol{\xi} = \boldsymbol{T}^{\mathsf{fem}}(\mu^\star) \right\} \cup V_N; \\ & \qquad \qquad \qquad \qquad \qquad Append \ \mu^\star \ \mathsf{to} \ S; \\ & \qquad \qquad N \leftarrow N + 1; \end{split}$$

end

Output: Sample S, reduced basis V_N

Heat coupled with AH flow

Time of execution

Models

Implementation in the Feel++ library.

	Finite element resolution ${\mathcal T}^{\sf fem}(\mu)$			Reduced model $\mathcal{T}^{rbm, \mathcal{N}}(\mu), \Delta_{\mathcal{N}}(\mu)$
	\mathbb{P}_1	\mathbb{P}_2 (np=1)	\mathbb{P}_2 (np=12)	
Problem size	$\mathcal{N} = 207 \ 845$	$\mathcal{N} = 1~580~932$		N = 10
$t_{\sf exec}$	5.534 s	62.432 s	10.76 s	$2.88 imes 10^{-4}\mathrm{s}$
speed-up	11.69	1	5.80	$2.17 imes 10^5$

Table 1: Times of execution, using mesh M3 for high fidelity simulations.

Results over a sampling $\varXi_{\mathsf{test}} \subset D^\mu$ of 100 parameters

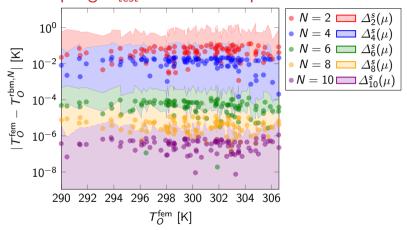


Figure 6: Error on RBM for various reduced basis sizes with error bound $\Delta_N(\mu)$.

Results over a sampling $\varXi_{\mathsf{test}} \subset D^\mu$ of 100 parameters

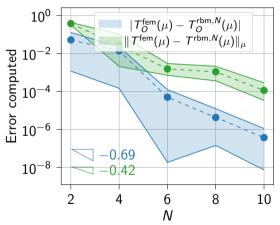


Figure 6: Convergence of the errors on the field and the output on point O.

Introduction Models Discrete full order model Reduced order framework Sensitivity analysis Heat coupled with AH flow Conclusion

Sensitivity analysis

Introduction Models Discrete full order model Reduced order framework Sensitivity analysis Heat coupled with AH flow Conclusion

Sensitivity analysis Choice of the distributions Stochastic sensitivity analysis

DSA

Sensitivity analysis

- Quantifies the effect of input parameters on the output.
- Two studies were carried:
 - 1. **Deterministic** sensitivity analysis: all parameters are set to their baseline values, except for one, which varies within the ranges found in the literature,
 - 2. Stochastic sensitivity analysis: all parameters are considered as random variables.

Sobol' indices^a

- $\mu = (\mu_1, \ldots, \mu_n) \in D^{\mu}$.
- \blacktriangleright $\mu_i \sim X_i$ where $(X_i)_i$ is a family of **independent** random variables.
- ▶ Distributions X_i selected from data available in the literature.
- ightharpoonup Output $s_N(\mu) \sim Y = f(X_1, \dots, X_n)$.

Sobol' indices

- First-order indices: $S_j = \frac{\mathsf{Var}\left(\mathbb{E}\left[Y|X_j\right]\right)}{\mathsf{Var}(Y)}$ Total-order indices: $S_j^{\mathsf{tot}} = \frac{\mathsf{Var}\left(\mathbb{E}\left[Y|X_{(-j)}\right]\right)}{\mathsf{Var}(Y)}$

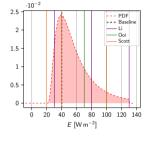
where $X_{(-i)} = (X_1, \dots, X_{i-1}, X_{i+1}, \dots, X_n)$.

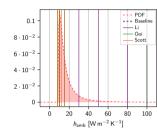
effect of one parameter on the output

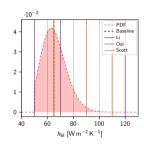
interaction of all parameters but one on the output

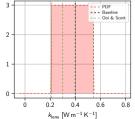
^aSobol. Sensitivity Estimates for Nonlinear Mathematical Models. (1993)

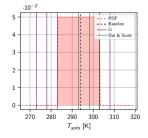
Input parameters distributions

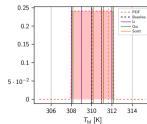




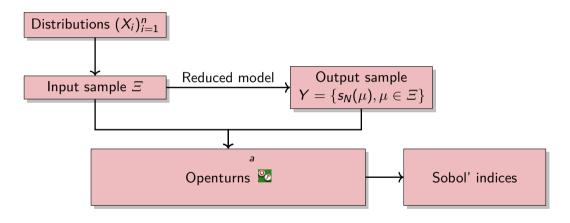








Stochastic sensitivity analysis



^aBaudin et al. Handbook of Uncertainty Quantification. (2016)

roduction Models Discrete full order model Reduced order framework **Sensitivity analysis** Heat coupled with AH flow Con nsitivity analysis Choice of the distributions **Stochastic sensitivity analysis**

Stochastic sensitivity analysis

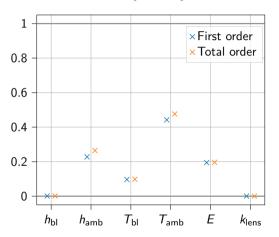
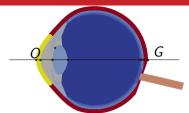


Figure 7: Sobol' indices: temperature at point O.

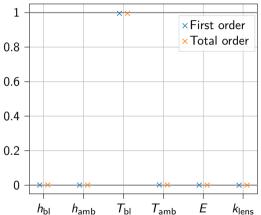


Temperature at the level of the **cornea**:

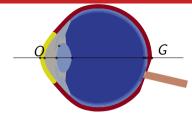
- ▶ **significantly** influenced by $T_{\rm amb}$, $h_{\rm amb}$ (external factors) and E, $T_{\rm bl}$ (subject specific parameters) \longrightarrow need for measurements/better model for these contributions,
- ▶ **minimally** influenced by k_{lens} , h_{bl} → can be fixed at baseline value,
- **high order** interactions on T_{amb} , h_{amb} .

Introduction Models Discrete full order model Reduced order framework Sensitivity analysis Heat coupled with AH flow Conclusion Sensitivity analysis Choice of the distributions Stochastic sensitivity analysis

Stochastic sensitivity analysis



 $h_{\rm bl}$ $h_{\rm amb}$ $T_{\rm bl}$ $T_{\rm amb}$ E $k_{\rm lens}$ Figure 7: Sobol' indices: temperature at point G.



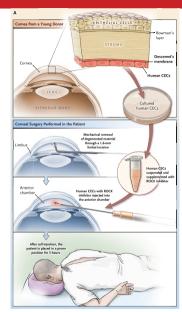
Temperature at the back of the eye:

only influenced by the blood temperature. Heat transfer coupled with aqueous humor flow

Reduced order framework Heat coupled with AH flow Motivation Computational framework Numerical results Wall shear stress

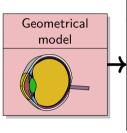
Motivation: Endothelial cells sedimentation

- AH flow plays a significant role in heat distribution, and intraocular pressure^a.
- Focus on the wall shear stress of the AH.
- Medical application: corneal endothelial cell **sedimentation** in the cornea^b



^aDvoriashyna et al. Ocular Fluid Dynamics. (2019)

^bKinoshite et al. N Engl J Med. (2018) (Figure extracted from this reference)



Mesh generation

- ▶ 3D mesh with $4.97 \cdot 10^6$ elements.
- Fine mesh **refinement** in Ω_{AH} . where the coupled model is considered.

Biophysical model

$$\rho(\mathbf{u} \cdot \nabla)\mathbf{u} - \nabla(2\mu\underline{\underline{\mathbf{D}}}(\mathbf{u}) - p\underline{\underline{\mathbf{I}}}) = -\rho\beta(T - T_{\text{ref}})\mathbf{g},$$

$$\nabla \cdot \mathbf{u} = 0,$$

$$\rho C_p \mathbf{u} \cdot \nabla T - k\nabla^2 T = 0.$$

Finite element solver

- ▶ Use the Feel++^a heatfluid toolbox using monolithic approach and PDE based preconditioning for solving the **non-linear** problem,
- Model validation and verification.

^aC. Prud'homme, et al. Feel++ Release V111. (2024)

Heat coupled with AH flow Motivation Computational framework Numerical results

Pressure and velocity: impact of the posture

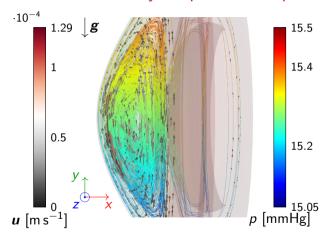


Figure 8: Standing position.

Recirculation of the AH.

^aWang et al. BioMedical Engineering OnLine. (2016)

^bAbdelhafid et al. Recent Devel. in Mathematical, Statistical and Computational Sciences. (2021)

^CMurgoitio-Esandi et al. Translational Vision Science & Technology. (2023)

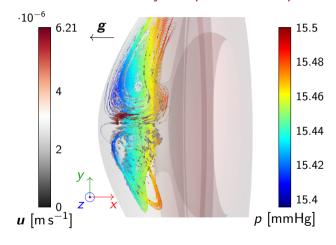


Figure 8: Prone position.

- Recirculation of the AH,
- Formation of a Krukenberg's spindle, in good agreement with clinical observations and previous studies^{abc}

^aWang et al. BioMedical Engineering OnLine. (2016)

^bAbdelhafid et al. Recent Devel. in Mathematical, Statistical and Computational Sciences. (2021)

Murgoitio-Esandi et al. Translational Vision Science & Technology. (2023)

Reduced order framework Heat coupled with AH flow Motivation Computational framework Numerical results

Pressure and velocity: impact of the posture

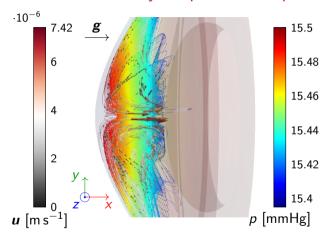


Figure 8: Supine position.

- Recirculation of the AH.
- Formation of a Krukenberg's spindle, in good agreement with clinical observations and previous studies^{abc}
- Fluid dynamics is strongly influenced by the position of the patient.

35 / 37

^aWang et al. BioMedical Engineering OnLine. (2016)

^bAbdelhafid et al. Recent Devel. in Mathematical, Statistical and Computational Sciences. (2021)

Murgoitio-Esandi et al. Translational Vision Science & Technology. (2023)

model Reduced order framework Sensitivity analysis Heat coupled with AH flow Conclu

Motivation Computational framework Numerical results Wall shear stress

Wall shear stress

Models

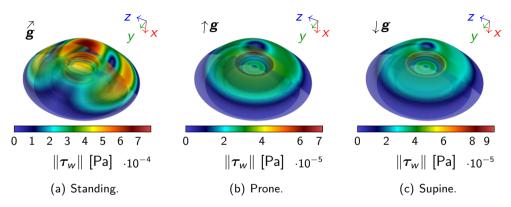


Figure 9: Wall shear stress distribution on the corneal endothelium for the three postural orientations.

36 / 37

Heat coupled with AH flow

Wall shear stress

- ► The WSS distribution is **impacted** by the postural orientation and the ambient temperature.
- ► **Application:** Control the temperature to enhance the diffusion and the sedimentation of the cells during the treatment.

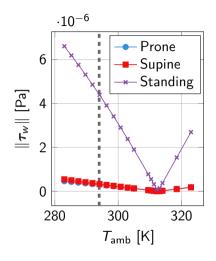


Figure 9: Mean wall shear stress on the corneal surface

- **Heat transport model in the human eye:** FEM simulations, validation against experimental data,
- **Reduced model** with a certified error bound.
- **Sensitivity analysis:** computation of Sobol' indices, highlight of the impact of some parameters on the outputs of interest.
- T. Saigre, C. Prud'homme, M. Szopos. Model order reduction and sensitivity analysis for complex heat transfer simulations inside the human eveball. Int J Numer Methods Biomed Eng. (2024)
- T. Saigre, C. Prud'homme, M. Szopos, Associated dataset (publicly available). DOI: 10.5281/ZENODO.13907890 Zenodo. (2024)

- **Couple heat transfer with AH dynamics:** assess the impact of postural orientation and environmental conditions on the flow and its properties.
 - T. Saigre, V. Chabannes, C. Prud'homme, M. Szopos, A coupled fluid-dynamics-heat transfer model for 3D simulations of the aqueous humor flow in the human eye. CMBE2024 Proceedings. (2024)
- T. Saigre, C. Prud'homme, M. Szopos, V. Chabannes. Mesh and configuration files to perform coupled heat+fluid simulations on a realistic human eveball geometry with Feel++. DOI: 10.5281/ZENODO.13886143 Zenodo. (2024)
- Thomas Saigre. "Mathematical modeling, simulation and reduced order modeling of ocular flows and their interactions: Building the Eye's Digital Twin". Theses. Université de Strabourg, Dec. 2024

oduction Models Discrete full order model Reduced order framework Sensitivity analysis Heat coupled with AH flow Conclusion

Conclusion and perspectives

- ► Enhance the model:
 - ▶ Geometrical model: take into account geometrical parameters,
 - ► Fluid dynamics: modeling the production and drainage of aqueous humor to assess their impact.
- Clinical perspective: assess the corneal cell sedimentation after injection.
 - T. Saigre, V. Chabannes, G. Guidoboni, C. Prud'homme, M. Szopos, SP. Srinivas. Effect of Cooling of the Ocular Surface on Endothelial Cell Sedimentation in Cell Injection Therapy: Insights from Computational Fluid Dynamics. (2025), to appear in IOVS.
- Steps towards a digital twin of the eye:
 - incorporate patient-specific data,
 - enhance predictive modeling and personalized medical applications.

Thank you for your attention!

[Abd+21]	Farah Abdelhafid et al. "Operator Splitting for the Simulation of Aqueous Humor Thermo-Fluid-Dynamics in the Anterior Chamber". en. In: Recent Developments in Mathematical, Statistical and Computational Sciences. Ed. by D. Marc Kilgour et al. Vol. 343. Series Title: Springer Proceedings in Mathematics & Statistics. Cham: Springer International Publishing, 2021, pp. 489–499.
[Bau+16]	Michaël Baudin et al. "OpenTURNS: An Industrial Software for Uncertainty Quantification in Simulation". In: <i>Handbook of Uncertainty Quantification</i> . Ed. by Roger Ghanem, David Higdon, and Houman Owhadi. Cham: Springer International Publishing, 2016, pp. 1–38.
[BBS20]	Ajay Bhandari, Ankit Bansal, and Niraj Sinha. "Effect of aging on heat transfer, fluid flow and drug transport in anterior human eye: A computational study". en. In: <i>Journal of Controlled Release</i> 328 (Dec. 2020), pp. 286–303.
[Bha21]	Ajay Bhandari. "Ocular Fluid Mechanics and Drug Delivery: A Review of Mathematical and Computational Models". en. In: <i>Pharmaceutical Research</i> 38.12 (Dec. 2021), pp. 2003–2033.
[Cha+24]	Vincent Chabannes et al. A 3D geometrical model and meshing procedures for the human eyeball. Sept. 2024.
[Chr+24]	Christophe Prud'homme et al. feelpp/feelpp: Feel++ Release V111 preview.9. Mar. 2024.

[CM09]	Rachida Chakir and Yvon Maday. "Une méthode combinée d'éléments finis à deux grilles/bases				
	réduites pour l'approximation des solutions d'une E.D.P. paramétrique". fr. In: Comptes Rei				
	Mathématique 347.7-8 (2009). Publisher: Elsevier, pp. 435–440.				

- [Dvo+19] Mariia Dvoriashyna et al. "Mathematical Models of Aqueous Production, Flow and Drainage". en. In: Ocular Fluid Dynamics. Ed. by Giovanna Guidoboni, Alon Harris, and Riccardo Sacco. Series Title: Modeling and Simulation in Science, Engineering and Technology, Cham: Springer International Publishing, 2019, pp. 227–263.
- [Eme+75] A. F. Emery et al. "Microwave Induced Temperature Rises in Rabbit Eves in Cataract Research". en. In: Journal of Heat Transfer 97.1 (Feb. 1975), pp. 123–128.
- [EYB89] N. Efron, G. Young, and N. A. Brennan. "Ocular surface temperature". eng. In: Current Eye Research 8.9 (Sept. 1989), pp. 901-906.
- [Hev+16]Steven B Heymsfield et al. "Adult Human Ocular Volume: Scaling to Body Size and Composition". In: Anatomy & Physiology 6.5 (2016).
- [ITI24] IT'IS Foundation. Thermal Conductivity. 2024.
- J J W Lagendijk. "A mathematical model to calculate temperature distributions in human and [J J82] rabbit eyes during hyperthermic treatment". In: Physics in Medicine & Biology 27.11 (Nov. 1982), pp. 1301-1311.

[Ker+05]	Gaetan Kerschen et al. "The Method of Proper Orthogonal Decomposition for Dynamical Characterization and Order Reduction of Mechanical Systems: An Overview". en. In: <i>Nonlinear Dynamics</i> 41.1-3 (Aug. 2005), pp. 147–169.
[Kin+18]	Shigeru Kinoshita et al. "Injection of Cultured Cells with a ROCK Inhibitor for Bullous Keratopathy". en. In: <i>New England Journal of Medicine</i> 378.11 (Mar. 2018), pp. 995–1003.
[KS10]	Andreas Karampatzakis and Theodoros Samaras. "Numerical model of heat transfer in the human eye with consideration of fluid dynamics of the aqueous humour". In: <i>Physics in Medicine and Biology</i> 55.19 (Oct. 2010), pp. 5653–5665.
[Li+10]	Eric Li et al. "Modeling and simulation of bioheat transfer in the human eye using the 3D alpha finite element method (\$\alpha\$FEM)". In: International Journal for Numerical Methods in Biomedical Engineering 26.8 (2010), pp. 955–976.
[Map68]	R. Mapstone. "Measurement of corneal temperature". en. In: Experimental Eye Research 7.2 (Apr. 1968), 237–IN29.
[Mur+23]	Javier Murgoitio-Esandi et al. "A Mechanistic Model of Aqueous Humor Flow to Study Effects of Angle Closure on Intraocular Pressure". In: <i>Translational Vision Science & Technology</i> 12.1 (Jan. 2023), p. 16.

[NO06]	E.Y.K. Ng and E.H. Ooi. "FEM simulation of the eye structure with bioheat analysis". en. In: Computer Methods and Programs in Biomedicine 82.3 (June 2006), pp. 268–276.
[NO07]	E.Y.K. Ng and E.H. Ooi. "Ocular surface temperature: A 3D FEM prediction using bioheat equation". en. In: <i>Computers in Biology and Medicine</i> 37.6 (June 2007), pp. 829–835.
[ON08]	Ean-Hin Ooi and Eddie Yin-Kwee Ng. "Simulation of aqueous humor hydrodynamics in human eye heat transfer". en. In: <i>Computers in Biology and Medicine</i> 38.2 (Feb. 2008), pp. 252–262.
[Pru+02]	C. Prud'homme et al. "Reliable Real-Time Solution of Parametrized Partial Differential Equations: Reduced-Basis Output Bound Methods". en. In: <i>Journal of Fluids Engineering</i> 124.1 (Mar. 2002), pp. 70–80.
[PW05]	Christine Purslow and James S. Wolffsohn. "Ocular Surface Temperature: A Review". en. In: Eye & Contact Lens: Science & Clinical Practice 31.3 (May 2005), pp. 117–123.
[RF77]	Robert F. Rosenbluth and Irving Fatt. "Temperature measurements in the eye". en. In: Experimental Eye Research 25.4 (Oct. 1977), pp. 325–341.

[RPK19] M. Raissi, P. Perdikaris, and G. E. Karniadakis. "Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations". In: *Journal of Computational Physics* 378 (2019), pp. 686–707.

- [RRK13] R Ramakrishnan, Shalmali Ranaut, and Mona Khurana. "Aqueous Humor Dynamics". en. In: Diagnosis and Management of Glaucoma. Jaypee Brothers Medical Publishers (P) Ltd., 2013, pp. 76–76.
- [Sai+24a] Thomas Saigre et al. "A coupled fluid-dynamics-heat transfer model for 3D simulations of the aqueous humor flow in the human eye". In: 8th International Conference on Computational and Mathematical Biomedical Engineering CMBE2024 Proceedings. Vol. 2. Arlington (Virginia), United States: P. Nithiarasu and R. Löhner (Eds.), June 2024, pp. 508–512.
- [Sai+24b] Thomas Saigre et al. Mesh and configuration files to perform coupled heat+fluid simulations on a realistic human eyeball geometry with Feel++. Oct. 2024.
- [Sai+25] Thomas Saigre et al. Effect of Cooling of the Ocular Surface on Endothelial Cell Sedimentation in Cell Injection Therapy: Insights from Computational Fluid Dynamics. To appear in IOVS. 2025.
- [Sai24] Thomas Saigre. "Mathematical modeling, simulation and reduced order modeling of ocular flows and their interactions: Building the Eye's Digital Twin". Theses. Université de Strabourg, Dec. 2024.
- [Sal+23] Lorenzo Sala et al. "The ocular mathematical virtual simulator: A validated multiscale model for hemodynamics and biomechanics in the human eye". en. In: International Journal for Numerical Methods in Biomedical Engineering (Nov. 2023), e3791.

[Sch97]	Joachim Schöberl. "NETGEN An advancing front 2D/3D-mesh generator based on abstract rules". In: <i>Computing and Visualization in Science</i> 1.1 (July 1997), pp. 41–52.
[Sco88]	J A Scott. "A finite element model of heat transport in the human eye". In: <i>Physics in Medicine and Biology</i> 33.2 (Feb. 1988), pp. 227–242.
[Sob93]	Ilya M. Sobol. "Sensitivity Estimates for Nonlinear Mathematical Models". In: 1993.
[SPS24a]	Thomas Saigre, Christophe Prud'homme, and Marcela Szopos. Model order reduction and sensitivity analysis for complex heat transfer simulations inside the human eyeball. Oct. 2024.
[SPS24b]	Thomas Saigre, Christophe Prud'homme, and Marcela Szopos. "Model order reduction and sensitivity analysis for complex heat transfer simulations inside the human eyeball". en. In: International Journal for Numerical Methods in Biomedical Engineering 40.11 (Sept. 2024), e3864.
[Wan+16]	Wenjia Wang et al. "Fluid and structure coupling analysis of the interaction between aqueous

humor and iris". en. In: BioMedical Engineering OnLine 15.S2 (Dec. 2016), p. 133.

39 / 37

Linearization of the radiative transfer equation

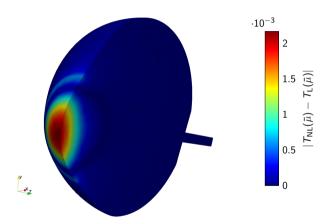


Figure 10: Difference of the temperature between the full model and the linearized model.

Mesh convergence for the high-fidelity model

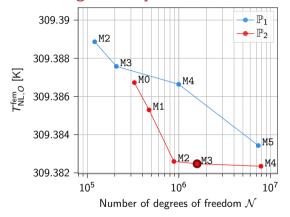
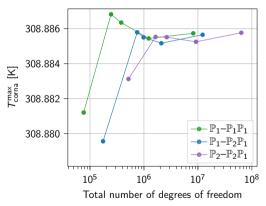
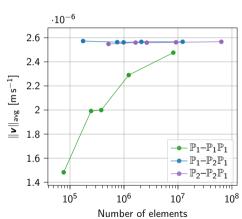


Figure 11: Temperature at the center of the cornea computed with the high-fidelity model $\mathcal{E}_{NL}(\bar{\mu})$, depending on the level of mesh refinement.

Verifications and validations of the coupled heat-fluid model: mesh convergence



(a) Maximal temperature of the cornea.



(b) Mean fluid velocity.

Verifications and validations of the coupled heat-fluid model

Author	т.	No AH flow	AH flow coupled		
Author	T_{amb}	NO AH IIOW	Prone	Supine	Standing
Scott (2D)	293.15	306.4	-	-	_
Ooi et al. (2D)	298	306.45	-	-	306.9
Karampatzakis et al.	293	306.81	_	_	307.06
· ·	296	307.33	_	_	307.51
(3D)	298	307.69	_	_	307.83
	293	306.5647	306.56915	306.55899	306.63672
Current model (3D)	296	307.09845	307.10175	307.09436	307.14651
	298	307.45746	307.46008	307.45432	307.49222

41 / 37

Verifications and validations of the coupled heat-fluid model

Position	Reference	$\begin{array}{c} {\sf Maximum\ velocity} \\ {\sf [ms^{-1}]} \end{array}$	Average velocity $[m s^{-1}]$	Pressure [mmHg]
Supine	Wang et al. Murgoitio-Esandi et al. Bhandari et al. Current model	$9.44 \cdot 10^{-4}$ $6 \cdot 10^{-5}$ n/a $2.59 \cdot 10^{-5}$	$4.1 \cdot 10^{-5}$ n/a $9.88 \cdot 10^{-6}$ $3.21 \cdot 10^{-6}$	13.50 - 13.58 n/a n/a 15.42 - 15.59
Standing	Wang et al. Bhandari et al. Current model	$9.6 \cdot 10^{-4}$ n/a $2.76 \cdot 10^{-4}$	$2.5 \cdot 10^{-4} 5.88 \cdot 10^{-5} 5.23 \cdot 10^{-5}$	13.50 - 13.59 n/a 15.28 - 15.72

Reduced Basis Method

Problem considered

Given $\mu \in D^{\mu}$, evaluate the output of interest

$$s_{\mathcal{N}}(\mu) = \ell(extstyle extstyl$$

where $T^{\mathrm{rbm},N}(\mu) \in V_N$ is the solution of

$$a(T^{\mathsf{rbm},N}(\mu), v; \mu) = f(v; \mu) \quad \forall v \in V_N$$

► Snapshots matrix:

$$\mathbb{Z}_{N} = [\xi_{1}, \cdots, \xi_{N}] \in \mathbb{R}^{\mathcal{N} \times N},$$

Reduced Basis Method

Problem considered

Given $\mu \in \mathcal{D}^{\mu}$, evaluate the output of interest

$$s_N(\mu) = \ell(\mathbf{T}^{\mathsf{rbm},N}(\mu);\mu)$$

where $T^{\mathrm{rbm},N}(\mu) \in V_N$ is the solution of

$$a(T^{\mathsf{rbm},N}(\mu), v; \mu) = f(v; \mu) \quad \forall v \in V_N$$

Snapshots matrix: $\mathbb{Z}_N = [\xi_1, \dots, \xi_N] \in \mathbb{R}^{N \times N}$.

▶ Projection onto V_N :

$$\underline{\underline{A}}_{N}(\mu) := \mathbb{Z}_{N}^{T}\underline{\underline{A}}(\mu)\mathbb{Z}_{N} \in \mathbb{R}^{N \times N} \text{ and}$$

$$f_{N}(\mu) := \mathbb{Z}_{N}^{T}f(\mu) \in \mathbb{R}^{N}.$$

Reduced basis resolution

Input: $\mu \in D^{\mu}$,

- ightharpoonup Construct $\underline{\underline{A}}_{N}(\mu)$, $f_{N}(\mu)$ and $L_{N,k}(\mu)$,
- ► Solve $\underline{\underline{A}}_N(\mu) T^{\text{rbm},N}(\mu) = f_N(\mu)$,
- Compute outputs $s_{N,k}(\mu) = \boldsymbol{L}_{N,k}(\mu)^T \boldsymbol{T}^{\text{rbm},N}(\mu).$

Output: Numerical solution $T^{\text{rbm},N}(\mu)$ and outputs $s_{N,k}(\mu)$.

Affine decomposition^a

- $\blacktriangleright \text{ We want to write } \underline{\underline{\mathbf{A}}}(\mu) = \sum_{q=1}^{Q_a} \beta_A^q(\mu) \underline{\underline{\mathbf{A}}}^q, \text{ and } \mathbf{F}(\mu) = \sum_{q=1}^{Q_f} \beta_F^q(\mu) \mathbf{F}^q.$
- $\blacktriangleright \text{ Hence, } \underline{\underline{\mathbf{A}}}_{N}(\mu) = \sum_{q=1}^{Q_{a}} \beta_{A}^{q}(\mu) \underline{\underline{\mathbf{A}}}_{N}^{q} \text{ and } \mathbf{F}_{N}(\mu) = \sum_{q=1}^{Q_{f}} \beta_{F}^{q}(\mu) \mathbf{F}_{N}^{q}.$

Affine decomposition^a

- ▶ We want to write $\underline{\underline{\mathbf{A}}}(\mu) = \sum_{q=1}^{Q_a} \beta_A^q(\mu) \underline{\underline{\mathbf{A}}}^q$, and $\mathbf{F}(\mu) = \sum_{q=1}^{Q_f} \beta_F^q(\mu) \mathbf{F}^q$.
- ► Compute and store $\underline{\underline{A}}_N^q = \mathbb{Z}_N^T \underline{\underline{A}}^q \mathbb{Z}_N$ and $\mathbf{F}_N^q = \mathbb{Z}_N^T \mathbf{F}^q$.
- $a(T, v; \mu) = \sum_{q=1}^{4} \beta_{A}^{q}(\mu) a^{q}(T, v) \text{ with }$

$$\begin{split} \beta_A^1(\mu) &= k_{\mathsf{lens}} & \quad a^1(T,v) = \int_{\Omega_{\mathsf{lens}}} \nabla T \cdot \nabla v \, \mathrm{d}x \\ \beta_A^2(\mu) &= h_{\mathsf{amb}} & \quad a^2(T,v) = \int_{\Gamma_{\mathsf{amb}}} \mathsf{T}v \, \mathrm{d}\sigma \\ \beta_A^3(\mu) &= h_{\mathsf{bl}} & \quad a^3(T,v) = \int_{\Gamma_{\mathsf{body}}} \mathsf{T}v \, \mathrm{d}\sigma \\ \beta_A^4(\mu) &= 1 & \quad a^4(T,v) = \int_{\Gamma_{\mathsf{amb}}} h_r \mathsf{T}v \, \mathrm{d}\sigma + \sum_{i \neq \mathsf{lens}} k_i \int_{\Omega_i} \nabla T \cdot \nabla v \, \mathrm{d}x \end{split}$$

^aPrud'homme et al. Journal of Fluids Engineering. (2002)

Affine decomposition^a

- $\blacktriangleright \text{ We want to write } \underline{\underline{\mathbf{A}}}(\mu) = \sum_{q=1}^{Q_a} \beta_A^q(\mu) \underline{\underline{\mathbf{A}}}^q, \text{ and } \mathbf{F}(\mu) = \sum_{q=1}^{Q_f} \beta_F^q(\mu) \mathbf{F}^q.$
- ► Compute and store $\underline{A}_N^q = \mathbb{Z}_N^T \underline{A}^q \mathbb{Z}_N$ and $\underline{F}_N^q = \mathbb{Z}_N^T \underline{F}^q$.

$$f(v; \mu) = \sum_{p=1}^{2} \beta_F^p(\mu) f^p(v)$$

$$eta_F^1(\mu) = h_{\mathsf{amb}} T_{\mathsf{amb}} + h_r T_{\mathsf{amb}} - E$$
 $f^1(v) = \int_{\Gamma_{\mathsf{amb}}} v \, \mathrm{d}\sigma$ $\beta_F^2(\mu) = h_{\mathsf{bl}} T_{\mathsf{bl}}$ $f^2(v) = \int_{\Gamma_{\mathsf{bd}}} v \, \mathrm{d}\sigma$

^aPrud'homme et al. Journal of Fluids Engineering. (2002)

Offline / Online procedure

Offline:

- ▶ Solve *N* high-fidelity systems depending on \mathcal{N} to form \mathbb{Z}_N ,
- ▶ Form and store $\mathbf{F}_N^p(\xi_i)$
- Form and store $\underline{\underline{A}}_{N}^{q}(\xi_{i})$

Online: independant of ${\mathcal N}$

Given a new parameter $\mu \in D^{\mu}$,

- Form $\underline{\underline{A}}_N(\mu)$: $O(Q_aN^2)$,
- Form $\mathbf{F}_N(\mu)$: $O(Q_f N)$,
- Solve $\underline{\underline{\mathbf{A}}}_{N}(\mu) \mathbf{T}^{\mathsf{rbm},N}(\mu) = \mathbf{F}_{N}(\mu) : O(N^{3}),$
- ► Compute $s_N(\mu) = \boldsymbol{L}_N(\mu)^T \boldsymbol{T}^{\text{rbm},N}(\mu) : O(N)$.

Error bound^a $\Delta_N(\mu)$

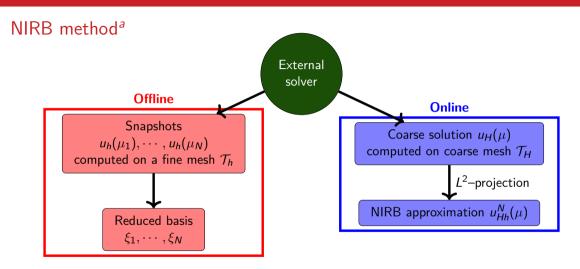
Such an error bound can be constructed efficiently from the $residual\ r$ of the variational problem:

$$r(v,\mu) := \ell(v;\mu) - a(T^{\mathsf{rbm},N}(\mu),v;\mu) \quad \forall v \in V$$

a lower bound $\alpha_{lb}(\mu)$ of the coercivity constant $\alpha(\mu)$ of $a(\cdot,\cdot;\mu)$, and the affine decomposition of a and f:

$$\Delta_N^{\mathfrak s}(\mu) := rac{\|r(\cdot,\mu)\|_{V'}^2}{lpha_{\mathsf{lb}}(\mu)}$$

^aPrud'homme et al. Journal of Fluids Engineering. (2002)



^aChakir & Maday Comptes Rendus Mathématique. (2009)

NIRB method^a

Instead of solving the system $\underline{\underline{\mathbf{A}}}^{N}(\mu)\mathbf{U}_{h}^{N}(\mu) = \mathbf{F}^{N}(\mu)$ in the online stage and construct the solution by :

$$u_h^N(\mu) = \sum_{i=1}^N \boldsymbol{U}_{h,i}^N(\mu) \xi_i$$

Let's denote by $\Pi_N u_h$ the L^2 - projection of \mathbb{FE} approximation u_h in the space X_h^N :

$$\Pi_N u_h(\mu) = \sum_{i=1}^N \alpha_i^{N,h}(\mu) \xi_i$$

Due to the orhtonormalization of basis function ξ_i , $\alpha_i^{N,h}(\mu)$ are defined by :

$$\alpha_i^{N,h}(\mu) = \langle u_h(\mu), \xi_i \rangle_{L^2}$$

^aChakir & Maday Comptes Rendus Mathématique. (2009)

- ▶ Coarse triangulation : $\{T_H\}_H$ with $H \gg h$,
- ightharpoonup new finite element space : X_H such that $\mathcal{N}_H = \dim(X_H) \ll \dim(X_h) = \mathcal{N}_h$,
- ▶ the computation of $u_H(\mu) \in X_H$ is less expensive than the one of $u_h(\mu) \in X_h$

The **NIRB method** consists in proposing another alternative of $\alpha_i^{N,h}(\mu)$ defined by :

$$\alpha_i^{N,H}(\mu) = \langle u_H(\mu), \xi_i \rangle_{L^2},$$

with $u_H(\mu)$, an approximate solution of the high-fidelity problem in the coarse triangulation.